- 
					 ∆ABC is an isosceles right angled triangle having ∠ C = 90°. If D is any point on AB, then AD2 + BD2 is equal to
 
- 
                        -  CD²
 
-  2CD²
 
-  3CD²
 
- 4CD²
 
-  CD²
Correct Option: B
We draw a figure of an isosceles right angled triangle having ∠ C = 90° , 
AC² + CB² = AB² 
⇒ 2BC² = (AD + DB)² 
⇒ 2BC² = AD² + DB² + 2AD.BD  ..... (i) 
∆ CEB and ∆CED are right angles. 
CD² = CE² + ED² 
and, BC² = CE² + BE² 
BC² – CD² = BE² – DE² 
BC² – CD² = (BE + DE) (BE – DE) 
BC² – CD² = (AE + DE) (BE – DE) 
BC² – CD² = AD . BD ..... (ii)
∴ From equations (i) and (ii) 
AD² + DB² = 2CD²
 
	