- 
					 Internal bisectors of ∠Q and ∠R of ∆PQR intersect at O. If ∠ROQ = 96° then the vlaue of ∠RPQ is
- 
                        -  36° 
 
-  24° 
 
-  12° 
 
- 6°
 
-  36° 
Correct Option: C
As per the given in question , we draw a figure of triangle ABC 
∠ROQ = 96° 
In ∆ OQR 
∠OQR + ∠ORQ + ∠QOR = 180°
| ⇒ | ∠PQR + | ∠PRQ + 96° = 180° | ||
| 2 | 2 | 
| ⇒ | (∠PQR + ∠PRQ) = 180° – 96° = 84° | |
| 2 | 
⇒ ∠PQR + ∠PRQ = 2 × 84° = 168°
In ∆ PQR,
∴ ∠QPR = 180° – ( ∠PQR + ∠PRQ ) = 180° – 168° = 12°
 
	