-
Internal bisectors of ∠Q and ∠R of ∆PQR intersect at O. If ∠ROQ = 96° then the vlaue of ∠RPQ is
-
- 36°
- 24°
- 12°
- 6°
- 36°
Correct Option: C
As per the given in question , we draw a figure of triangle ABC
∠ROQ = 96°
In ∆ OQR
∠OQR + ∠ORQ + ∠QOR = 180°
⇒ | ∠PQR + | ∠PRQ + 96° = 180° | ||
2 | 2 |
⇒ | (∠PQR + ∠PRQ) = 180° – 96° = 84° | |
2 |
⇒ ∠PQR + ∠PRQ = 2 × 84° = 168°
In ∆ PQR,
∴ ∠QPR = 180° – ( ∠PQR + ∠PRQ ) = 180° – 168° = 12°