- 
					 The internal bisectors of the ∠B and ∠C of the ∆ ABC, intersect at O. If ∠A = 100°, then the measure of ∠BOC is :
- 
                        -  140° 
 
-  120° 
 
-  110° 
 
- 130°
 
-  140° 
Correct Option: A
On the basis of given in question , we draw a figure triangle ABC ,
| ∠OBC = | ∠ABC; | |
| 2 | 
| ∠OCB = | ∠ACB; | |
| 2 | 
From ∆ OBC,
∠OBC + ∠OCB + ∠BOC = 180°
| (∠ABC + ∠ACB) + ∠BOC = 180° | ||
| 2 | 
| ⇒ | (180° - ∠BAC) + ∠BOC = 180° | |
| 2 | 
| ⇒ | (180° - 100) + ∠BOC = 180° | |
| 2 | 
⇒ ∠BOC = 180° – 40° = 140°
 
	