-
In a quadrilateral ABCD, the bisectors of ∠A and ∠B meet at O. If ∠C = 70° and ∠D = 130°, then measure of ∠AOB is
-
- 40°
- 60°
- 80°
- 100°
- 40°
Correct Option: D
On the basis of question we draw a figure of quadrilateral ABCD
Here , ∠C = 70° and ∠D = 130°
We know that , ∠A + ∠B + ∠C + ∠D = 360°
⇒ ∠A + ∠B + 70° + 130° = 360°
⇒ ∠A + ∠B = 360° – 70° – 130° = 160°
In ∆ AOB,
∠OAB + ∠OBA + ∠AOB = 180°
⇒ | + | + ∠AOB = 180° | ||
2 | 2 |
⇒ | (∠A + ∠B) + ∠AOB = 180° | |
2 |
⇒ | × 160° + ∠AOB = 180° | |
2 |
⇒ ∠AOB = 180° – 80° = 100°