- 
					 ∆ ABC is a right angled triangle with AB = 6 cm, BC = 8 cm. O is the incentre of the triangle. The radius of the in-circle is : 
 
- 
                        -  3 cm 
 
-   4 cm 
 
-  2 cm 
 
- 5 cm
 
-  3 cm 
Correct Option: C
As per the given in question , we draw a figure of  a right angled triangle ABC and O is the incentre of the triangle 
Given , AB = 6 cm, BC = 8 cm
OP = OQ = OR = r (let) 
∠CBA = 90° 
From ∆ABC ,
∴ AC = √AB² + BC²
AC = √6² + 8² = √36 + 64 
AC = √100 = 10 cm. 
Area of ∆ ABC = Area of ( ∆ AOC + ∆ BOC + ∆ AOB)
| ⇒ | × 6 × 8 = | × AC × OQ + | × BC × OR + | × AB × OP | ||||
| 2 | 2 | 2 | 2 | 
| ⇒ 24 = | × 10 × r + | × 8 × r + | × 6 × r | |||
| 2 | 2 | 2 | 
⇒ 24 = 5r + 4r + 3r
| ⇒ 12r = 24 ⇒ r = | = 2 cm. | |
| 2 | 
 
	