-
∆ ABC is a right angled triangle with AB = 6 cm, BC = 8 cm. O is the incentre of the triangle. The radius of the in-circle is :
-
- 3 cm
- 4 cm
- 2 cm
- 5 cm
- 3 cm
Correct Option: C
As per the given in question , we draw a figure of a right angled triangle ABC and O is the incentre of the triangle
Given , AB = 6 cm, BC = 8 cm
OP = OQ = OR = r (let)
∠CBA = 90°
From ∆ABC ,
∴ AC = √AB² + BC²
AC = √6² + 8² = √36 + 64
AC = √100 = 10 cm.
Area of ∆ ABC = Area of ( ∆ AOC + ∆ BOC + ∆ AOB)
⇒ | × 6 × 8 = | × AC × OQ + | × BC × OR + | × AB × OP | ||||
2 | 2 | 2 | 2 |
⇒ 24 = | × 10 × r + | × 8 × r + | × 6 × r | |||
2 | 2 | 2 |
⇒ 24 = 5r + 4r + 3r
⇒ 12r = 24 ⇒ r = | = 2 cm. | |
2 |