- 
					 The angles of depression of two ships from the top of a light house are 60° and 45° towards east. If the ships are 300 metre apart, the height of the light house is
- 
                        - 200 (3 + √3) metre
- 250 (3 + √3) metre
- 150 (3 + √3) metre
- 160 (3 + √3) metre
 
Correct Option: C

AB = Lamp post = h metre C and D = Positions of ships CD = 300 metre; BC = x metre ∆ACB = 60 metre; ∠ADB = 45°
In ∆ABC,
| tan 60° = | |
| BC | 
| ⇒ √3 = | |
| x | 
⇒ h = √3x ..... (i)
In ∆ABD,
| tan 45° = | |
| BD | 
| ⇒ 1 = | |
| x + 300 | 
⇒ h = x + 300
| ⇒ h = | + 300 | |
| √3 | 
| ⇒ h - | = 300 | |
| √3 | 
| ⇒ h - | = 300 | |
| √3 | 
⇒ h (√3 - 1) = 300√3
| ⇒ h = | |
| √3 - 1 | 
| = | |
| (√3 - 1)(√3 + 1) | 
| = | |
| 2 | 
= 150(3 + √3) metre
= 45 kmph.
 
	