-
If (r cos θ – √3 )² + (r sin θ –1)² = 0 then the value of
r tan θ + sec θ is equal to r sec θ + tan θ
-
-
4 5 -
5 4 -
√3 4 -
√5 4
-
Correct Option: A
(r cos θ – √3 )⇒ + (r sin θ –1)⇒ = 0
⇒ r cos θ – √3 = 0 and r sin θ – 1 = 0
⇒ r cos θ = √3 and r sin θ = 1
∴ r² cos²θ + r² sin²θ = 3 + 1
⇒ r² (sin²θ + cos²θ) = 4
⇒ r² = 4
⇒ r = 2
∴ tan θ = | = | r cos θ | √3 |
and r cosθ = √3 ⇒ cosθ = | r |
⇒ sec θ = | √3 |

= | = | = | r² + 1 | 4 + 1 | 5 |