Home » Aptitude » Trigonometry » Question
  1. If (r cos θ – √3 )² + (r sin θ –1)² = 0 then the value of
    r tan θ + sec θ
    is equal to
    r sec θ + tan θ
    1. 4
      5
    2. 5
      4
    3. 3
      4
    4. 5
      4
Correct Option: A

(r cos θ – √3 )⇒ + (r sin θ –1)⇒ = 0
⇒ r cos θ – √3 = 0 and r sin θ – 1 = 0
⇒ r cos θ = √3 and r sin θ = 1
∴ r² cos²θ + r² sin²θ = 3 + 1
⇒ r² (sin²θ + cos²θ) = 4
⇒ r² = 4
⇒ r = 2

∴ tan θ =
r sin θ
=
1
r cos θ3

and r cosθ = √3 ⇒ cosθ =
3
r

⇒ sec θ =
r
3


=
2r
=
2 × 2
=
4

r² + 14 + 15



Your comments will be displayed only after manual approval.