- 
					 The shadow of a tower when the angle of elevation of the sun is 45°, is found to be 10 metre longer than when it was 60°. The height of the tower is
- 
                        - 5 (√3 - 1) metre
- 5 (3 + √3) metre
- 10 (√3 - 1) metre
- 10 (√3 + 1) metre
 
Correct Option: B

AB = Height of tower
= h metre
BC = Length of shadow when ∠BCA = 60° = x metre
BD = Length of shadow when ∠ADB = 45° = (x + 10) metre
In ∆ABC,
| tan 60° = | |
| BC | 
| ⇒ √3 = | |
| x | 
⇒ h = 3 x metre ..... (i)
In ∆ABD,
| tan 45° = | ⇒ 1 = | ||
| BD | x + 10 | 
| ⇒ h = x + 10 ⇒ h = | + 10 | |
| √3 | 
| ⇒ h - | = 10 | |
| √3 | 
| ⇒ | = 10 | |
| √3 | 
⇒ h(√3 - 1) = 10√3
| ⇒ h = | = | ||
| √3 - 1 | (√3 - 1)( | √3+ 1) | 
= 5(3 + √3) metre
 
	