-
The shadow of a tower when the angle of elevation of the sun is 45°, is found to be 10 metre longer than when it was 60°. The height of the tower is
-
- 5 (√3 - 1) metre
- 5 (3 + √3) metre
- 10 (√3 - 1) metre
- 10 (√3 + 1) metre
Correct Option: B
AB = Height of tower
= h metre
BC = Length of shadow when ∠BCA = 60° = x metre
BD = Length of shadow when ∠ADB = 45° = (x + 10) metre
In ∆ABC,
tan 60° = | |
BC |
⇒ √3 = | |
x |
⇒ h = 3 x metre ..... (i)
In ∆ABD,
tan 45° = | ⇒ 1 = | ||
BD | x + 10 |
⇒ h = x + 10 ⇒ h = | + 10 | |
√3 |
⇒ h - | = 10 | |
√3 |
⇒ | = 10 | |
√3 |
⇒ h(√3 - 1) = 10√3
⇒ h = | = | ||
√3 - 1 | (√3 - 1)( | √3 | + 1)
= 5(3 + √3) metre