Home » Aptitude » Trigonometry » Question
  1. The shadow of a tower when the angle of elevation of the sun is 45°, is found to be 10 metre longer than when it was 60°. The height of the tower is
    1. 5 (√3 - 1) metre
    2. 5 (3 + √3) metre
    3. 10 (√3 - 1) metre
    4. 10 (√3 + 1) metre
Correct Option: B


AB = Height of tower
= h metre
BC = Length of shadow when ∠BCA = 60° = x metre
BD = Length of shadow when ∠ADB = 45° = (x + 10) metre
In ∆ABC,

tan 60° =
AB
BC

⇒ √3 =
h
x

⇒ h = 3 x metre ..... (i)
In ∆ABD,
tan 45° =
AB
⇒ 1 =
h
BDx + 10

⇒ h = x + 10 ⇒ h =
h
+ 10
3

⇒ h -
h
= 10
3

3h - h
= 10
3

⇒ h(√3 - 1) = 10√3
+ 1)
⇒ h =
10√3
=
10√3(√3 + 1)
3 - 1(√3 - 1)(3

= 5(3 + √3) metre



Your comments will be displayed only after manual approval.