Control systems miscellaneous


Control systems miscellaneous

  1. In the unity feedback system shown below, the value of derivative feedback constant a, which will increase the damping ratio of the system to 0.7 is—











  1. View Hint View Answer Discuss in Forum

    On solving block 2

    C(s)
    =
    8/s(s+2)
    R′(s)1+8/s(s+2).as

    C(s)
    =
    8
    R′(s)s2 + s (8a + 2)

    Now, again simplifying block 1
    C(s)
    =
    8/s2 + s(8a +2)
    R′(s)8/s2 + s (8a + 2).1 + 1

    =
    8
    s2 + (8a + 2)s + 8

    C.E. is s2 + (2 + 8a) s + 8 = 0
    on comparing with the standard equation
    s2 + 2 ξ ωns + ωn2 = 0
    ωn2 = 8 ⇒ ωn = 2√2
    2 ξ ωn = 2 + 8a
    or
    ξ =
    2 + 8a
    ⇒ 0·7 =
    2 + 8a
    2.ωn2.2√2

    on solving we get a = 0.245


    Correct Option: B

    On solving block 2

    C(s)
    =
    8/s(s+2)
    R′(s)1+8/s(s+2).as

    C(s)
    =
    8
    R′(s)s2 + s (8a + 2)

    Now, again simplifying block 1
    C(s)
    =
    8/s2 + s(8a +2)
    R′(s)8/s2 + s (8a + 2).1 + 1

    =
    8
    s2 + (8a + 2)s + 8

    C.E. is s2 + (2 + 8a) s + 8 = 0
    on comparing with the standard equation
    s2 + 2 ξ ωns + ωn2 = 0
    ωn2 = 8 ⇒ ωn = 2√2
    2 ξ ωn = 2 + 8a
    or
    ξ =
    2 + 8a
    ⇒ 0·7 =
    2 + 8a
    2.ωn2.2√2

    on solving we get a = 0.245



  1. The closed-loop transfer function of a control system is given by
    C(s)
    =
    2(s - 1)
    R(s)(s + 2)(s + 1)

    For a unit step input the output is—









  1. View Hint View Answer Discuss in Forum

    Given r (t) = 1 then R (s) = 1/s

    C(s)
    =
    2 (s - 1)
    R(s)(s + 2)(s + 1)

    C(s) = R(s).
    2 (s - 1)
    s(s + 2)(s + 1)

    =
    0.2 (s - 1)
    s(s + 2)(s + 1)

    C(s) =
    A
    +
    B
    +
    C
    ss + 1s + 2

    A =
    2 (s + 1)
    |s=0 = -1
    (s + 1)(s + 2)

    B =
    2 (s - 1)
    |s=1 = 4
    s(s + 2)

    C =
    2 (s - 1)
    |s=2 = -3
    s(s + 1)

    on putting the value of A, B, C we get
    C(s) =
    -1
    +
    4
    -
    3
    ss + 1s + 2

    Taking inverse Laplace transform, we get
    C (t) = – 1 + 4e– t – 3e– 2t

    Correct Option: A

    Given r (t) = 1 then R (s) = 1/s

    C(s)
    =
    2 (s - 1)
    R(s)(s + 2)(s + 1)

    C(s) = R(s).
    2 (s - 1)
    s(s + 2)(s + 1)

    =
    0.2 (s - 1)
    s(s + 2)(s + 1)

    C(s) =
    A
    +
    B
    +
    C
    ss + 1s + 2

    A =
    2 (s + 1)
    |s=0 = -1
    (s + 1)(s + 2)

    B =
    2 (s - 1)
    |s=1 = 4
    s(s + 2)

    C =
    2 (s - 1)
    |s=2 = -3
    s(s + 1)

    on putting the value of A, B, C we get
    C(s) =
    -1
    +
    4
    -
    3
    ss + 1s + 2

    Taking inverse Laplace transform, we get
    C (t) = – 1 + 4e– t – 3e– 2t



  1. The overshoot of the system
    16K
    s(s2 + 2s + 16

    for a step input applied would be—









  1. View Hint View Answer Discuss in Forum

    Given C.E. = s2 + 2s + 16 = 0
    NOTE : Here reader not confused with
    C.E. = s (s2 + 2s + 16).
    Because here s is the input term, on comparing this equation with the standard equation
    s2 + 2ξ ωns + ωn2 = 0
    we get
    2 ξ ωn = 2, ωn 2 = 16 so ωn = 4.

    ξ =
    2
    =
    2
    = 0.25
    n2 × 4

    so % Mp = e–π ξ1 – ξ2 × 100
    = e – 3·14 × 0·25 1 – (.25)2
    = 40%

    Correct Option: B

    Given C.E. = s2 + 2s + 16 = 0
    NOTE : Here reader not confused with
    C.E. = s (s2 + 2s + 16).
    Because here s is the input term, on comparing this equation with the standard equation
    s2 + 2ξ ωns + ωn2 = 0
    we get
    2 ξ ωn = 2, ωn 2 = 16 so ωn = 4.

    ξ =
    2
    =
    2
    = 0.25
    n2 × 4

    so % Mp = e–π ξ1 – ξ2 × 100
    = e – 3·14 × 0·25 1 – (.25)2
    = 40%


  1. The position and acceleration error coefficients for the open-loop transfer function
    G(s) =
    K
    s2(s + 10) (s + 100)

    respectively are—









  1. View Hint View Answer Discuss in Forum

    Kp = s → 0Lim

    G (s) = s → 0Lim
    K
    = ∞
    s2(s + 10)(s + 100)

    Ka = s → 0Lim s2 G(s)
    = s → 0Lim
    s2·K
    = 0.001 K,
    s2(s + 10)(s + 100)

    or
    K/1000

    Correct Option: D

    Kp = s → 0Lim

    G (s) = s → 0Lim
    K
    = ∞
    s2(s + 10)(s + 100)

    Ka = s → 0Lim s2 G(s)
    = s → 0Lim
    s2·K
    = 0.001 K,
    s2(s + 10)(s + 100)

    or
    K/1000



  1. The position and velocity error coefficients for the system of transfer function
    G(s) =
    50
    (1 + 0.1s) (1 + 2s)

    respectively are—









  1. View Hint View Answer Discuss in Forum

    Kp = s → 0Lim G (s) = s → 0Lim
    50
    = 50
    (1 + 0·1s)(1 + 2s)

    Kv = s → 0Lim sG (s)
    = s → 0Lim
    s.50
    = 0
    (1 + 0·1s)(1 + 2s)

    Correct Option: C

    Kp = s → 0Lim G (s) = s → 0Lim
    50
    = 50
    (1 + 0·1s)(1 + 2s)

    Kv = s → 0Lim sG (s)
    = s → 0Lim
    s.50
    = 0
    (1 + 0·1s)(1 + 2s)