Sequences and Series


  1. The value of 5² + 6² + ..... + 10² + 20² is









  1. View Hint View Answer Discuss in Forum

    We know that ,

    1² + 2² + 3² + ..... + n² =
    n(n + 1)(2n + 1)
    6

    Correct Option: A

    We know that ,

    1² + 2² + 3² + ..... + n² =
    n(n + 1)(2n + 1)
    6

    Required answer =
    10 × 11 ×21
    + 20² -
    4 × 5 ×9
    66

    Hence , Required answer = 385 + 400 – 30 = 755


  1. 1² – 2² + 3² – 4² + .... – 10² is equal to









  1. View Hint View Answer Discuss in Forum

    Suppose S = 1² – 2² + 3² – 4² + ... – 10²
    S = (1² + 3² + 5² + 7² + 9²) – (2² + 4² + 6² + 8² + 10²)
    We know that ,

    Sum of squares of first n odd natural numbers =
    n(4n² - 1)
    3

    Sum of squares of first n even natural numbers =
    2
    n(n + 1)(2n + 1)
    3

    Hence, S =
    5(4 × 5 × 5 - 1)
    -
    2
    × 5(5 + 1) (2 × 5 + 1)
    33

    Correct Option: D

    Suppose S = 1² – 2² + 3² – 4² + ... – 10²
    S = (1² + 3² + 5² + 7² + 9²) – (2² + 4² + 6² + 8² + 10²)
    We know that ,

    Sum of squares of first n odd natural numbers =
    n(4n² - 1)
    3

    Sum of squares of first n even natural numbers =
    2
    n(n + 1)(2n + 1)
    3

    Hence, S =
    5(4 × 5 × 5 - 1)
    -
    2
    × 5(5 + 1) (2 × 5 + 1)
    33

    S =
    5 × 99
    =
    2 × 30 × 11
    33

    Therefore , S = 165 – 220 = – 55



  1. (1² + 2² + 3² + .......... + 10²) is equal to









  1. View Hint View Answer Discuss in Forum

    Using the given formula ,

    1² + 2² + 3² + ... + n² =
    n(n + 1)(2n + 1)
    6

    Here , n = 10

    Correct Option: B

    Using the given formula ,

    1² + 2² + 3² + ... + n² =
    n(n + 1)(2n + 1)
    6

    Here , n = 10
    ∴ 1² + 2² + 3² + .... + 10² =
    10(10 + 1)(20 + 1)
    = 385
    6


  1. (5² + 6² + 7² + ... + 10²) is equal to









  1. View Hint View Answer Discuss in Forum

    Using the given formula ,

    1² + 2² + 3² + 4² + ... + n² =
    n(n + 1)(2n + 1)
    6

    ∴ 5² + 6² + .... 10² = (1² + 2² + ... + 10²) – (1² + 2² + 3² + 4²)
    Here , n = 10 and n = 4

    Correct Option: C

    Using the given formula ,

    1² + 2² + 3² + 4² + ... + n² =
    n(n + 1)(2n + 1)
    6

    ∴ 5² + 6² + .... 10² = (1² + 2² + ... + 10²) – (1² + 2² + 3² + 4²)
    Here , n = 10 and n = 4
    Required answer =
    10 × 11 × 21
    -
    4 × 5 × 9
    66

    Required answer = 385 – 30 = 355



  1. [2² + 3² + 4² + 5² + 6² +7² +8² + 9² +10² ] is equal to









  1. View Hint View Answer Discuss in Forum

    We know that ,

    1² + 2² + 3² + .... + n² =
    n(n + 1)(2n + 1)
    6

    ∴ 2² + 3² + 4² + ..... + 10² = (1² + 2² + 3² + ..... + 10²) – 1
    Here , n = 10
    Required answer =
    10(10 + 1)(2 × 10 + 1)
    - 1
    6

    Correct Option: D

    We know that ,

    1² + 2² + 3² + .... + n² =
    n(n + 1)(2n + 1)
    6

    ∴ 2² + 3² + 4² + ..... + 10² = (1² + 2² + 3² + ..... + 10²) – 1
    Here , n = 10
    Required answer =
    10(10 + 1)(2 × 10 + 1)
    - 1
    6

    Required answer =
    10 × 11 × 21
    - 1 = 385 - 1 = 384
    6