Sequences and Series
- The value of 5² + 6² + ..... + 10² + 20² is
-
View Hint View Answer Discuss in Forum
We know that ,
1² + 2² + 3² + ..... + n² = n(n + 1)(2n + 1) 6
Correct Option: A
We know that ,
1² + 2² + 3² + ..... + n² = n(n + 1)(2n + 1) 6 Required answer = 10 × 11 ×21 + 20² - 4 × 5 ×9 6 6
Hence , Required answer = 385 + 400 – 30 = 755
- 1² – 2² + 3² – 4² + .... – 10² is equal to
-
View Hint View Answer Discuss in Forum
Suppose S = 1² – 2² + 3² – 4² + ... – 10²
S = (1² + 3² + 5² + 7² + 9²) – (2² + 4² + 6² + 8² + 10²)
We know that ,Sum of squares of first n odd natural numbers = n(4n² - 1) 3 Sum of squares of first n even natural numbers = 2 n(n + 1)(2n + 1) 3 Hence, S = 5(4 × 5 × 5 - 1) - 2 × 5(5 + 1) (2 × 5 + 1) 3 3
Correct Option: D
Suppose S = 1² – 2² + 3² – 4² + ... – 10²
S = (1² + 3² + 5² + 7² + 9²) – (2² + 4² + 6² + 8² + 10²)
We know that ,Sum of squares of first n odd natural numbers = n(4n² - 1) 3 Sum of squares of first n even natural numbers = 2 n(n + 1)(2n + 1) 3 Hence, S = 5(4 × 5 × 5 - 1) - 2 × 5(5 + 1) (2 × 5 + 1) 3 3 S = 5 × 99 = 2 × 30 × 11 3 3
Therefore , S = 165 – 220 = – 55
- (1² + 2² + 3² + .......... + 10²) is equal to
-
View Hint View Answer Discuss in Forum
Using the given formula ,
1² + 2² + 3² + ... + n² = n(n + 1)(2n + 1) 6
Here , n = 10
Correct Option: B
Using the given formula ,
1² + 2² + 3² + ... + n² = n(n + 1)(2n + 1) 6
Here , n = 10∴ 1² + 2² + 3² + .... + 10² = 10(10 + 1)(20 + 1) = 385 6
- (5² + 6² + 7² + ... + 10²) is equal to
-
View Hint View Answer Discuss in Forum
Using the given formula ,
1² + 2² + 3² + 4² + ... + n² = n(n + 1)(2n + 1) 6
∴ 5² + 6² + .... 10² = (1² + 2² + ... + 10²) – (1² + 2² + 3² + 4²)
Here , n = 10 and n = 4
Correct Option: C
Using the given formula ,
1² + 2² + 3² + 4² + ... + n² = n(n + 1)(2n + 1) 6
∴ 5² + 6² + .... 10² = (1² + 2² + ... + 10²) – (1² + 2² + 3² + 4²)
Here , n = 10 and n = 4Required answer = 10 × 11 × 21 - 4 × 5 × 9 6 6
Required answer = 385 – 30 = 355
- [2² + 3² + 4² + 5² + 6² +7² +8² + 9² +10² ] is equal to
-
View Hint View Answer Discuss in Forum
We know that ,
1² + 2² + 3² + .... + n² = n(n + 1)(2n + 1) 6
∴ 2² + 3² + 4² + ..... + 10² = (1² + 2² + 3² + ..... + 10²) – 1
Here , n = 10Required answer = 10(10 + 1)(2 × 10 + 1) - 1 6
Correct Option: D
We know that ,
1² + 2² + 3² + .... + n² = n(n + 1)(2n + 1) 6
∴ 2² + 3² + 4² + ..... + 10² = (1² + 2² + 3² + ..... + 10²) – 1
Here , n = 10Required answer = 10(10 + 1)(2 × 10 + 1) - 1 6 Required answer = 10 × 11 × 21 - 1 = 385 - 1 = 384 6