Logarithm


  1. If log10 2 =0.301, then the value of log10(50) is ?









  1. View Hint View Answer Discuss in Forum

    log1050 = log10[(50 x 2) / 2]
    = log 100 - log 2
    = log10102 - log 2

    Correct Option: C

    log1050 = log10[(50 x 2) / 2]
    = log 100 - log 2
    = log10102 - log 2
    = 2 - 0.301
    = 1.699


  1. Find the value of log (a2 / bc) + log (b2 / ac) + log (c2 / ab) ?









  1. View Hint View Answer Discuss in Forum

    Given Exp. = log (a2 / bc) + log (b2 / ac) + log (c2 / ab)
    = log [(a2 x b2 x c2) / (a2 x b2 x c2)]

    Correct Option: A

    Given Exp. = log (a2 / bc) + log (b2 / ac) + log (c2 / ab)
    = log [(a2 x b2 x c2) / (a2 x b2 x c2)]
    =log 1
    =0



  1. Find the value of log 8 + log 1/8 ?









  1. View Hint View Answer Discuss in Forum

    log 8 + log (1/8) = log (8 x1/8) = log 1 = 0

    Correct Option: A

    Given expression = log 8 + log (1/8)
    = log 8 x (1/8)
    = log 1
    = 0


  1. If log 2 = 0.3010, then the number of digits in 264 is ?









  1. View Hint View Answer Discuss in Forum

    Required answer = [64 log10 2] + 1

    Correct Option: C

    Required answer = [64 log10 2] + 1
    = [ 64 x 0.3010 ] + 1
    = 19.264 + 1
    = 19 + 1
    = 20



  1. Find the value of log x + log (1/x) ?









  1. View Hint View Answer Discuss in Forum

    Given expression = log x + log1/x
    = log x + log 1 - log x

    Correct Option: A

    Given expression = log x + log1/x
    = log x + log 1 - log x
    = log 1
    = 0