Home » Aptitude » Algebra » Question
  1. If a + b + c = 15 and a2 + b2 + c2 = 83, then a3 + b3 + c3 – 3abc = ?
    1. 160
    2. 175
    3. 180
    4. 100
Correct Option: C

a3 + b3 + c3 – 3abc = (a + b + c)
(a2 + b2 + c2 – ab – bc – ca)
Now, (a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)
⇒  152 = 83 + 2 (ab + bc + ca)
⇒  225 = 83 + 2 (ab + bc + ca)
⇒  142 = 2 (ab + bc + ca)

⇒  ab + bc + ca =
142
= 71
2

∴  a3 + b3 + c3 – 3abc = 15 × (83 – 71) = 15 × 12 = 180



Your comments will be displayed only after manual approval.