-
The sum (101 + 102 + 103 + .... + 200) is equal to :
-
- 15000
- 15025
- 15050
- 25000
- 15000
Correct Option: C
Let S = 101 + 102 + 103 + .... + 200
S = (100 + 1) + (100 + 2) + (100 + 3) + ...+ (100 + 100)
Thus, it consists of 100 terms.
S = (100 + 100 + 100 + .... 100 times) + (1 + 2 + 3 + ...... + 100)
S = (100 × 100) + (1 + 2 + 3 + ..... + 100)
S = (10000) + (1 + 2 + 3 + ... + 100)
S = 10000 + | |
2 |
S = 10000 + 5050 = 15050
We can find the required answer with the help of given formula :
Here, a = 101, d = 102 – 101 = 1 , L = 200
∴ L = an = a + (n – 1)d
200 = 101 + (n – 1)1
⇒ n – 1 = 99
n = 100
Sn = | [a + L] | |
2 |
Sn = | [101 + 200] | |
2 |
∴ Sn = 50 × 301 = 15050