-
Let Sn denote the sum of the first ‘n’ terms of an AP
S2n = 3Sn Then, the ratio S3n is equal to Sn
-
- 4
- 6
- 8
- 10
- 4
Correct Option: B
Let a be the first term and d be the common difference.
Then, Sn = | [2a + (n - 1)d] | |
2 |
S2n = | [2a + (2n - 1)d] | |
2 |
and S3n = | [2a + (3n - 1)d] | |
2 |
Given, S2n = 3Sn
∴ | [2a + (2n - 1)d] = 3 | [2a + (n - 1)d] | ||
2 | 2 |
⇒ 4a + (4n – 2)d = 6a + (3n – 3)d
⇒ d (4n – 2 – 3n + 3) = 2a
⇒ d = | |
n + 1 |
∴ Sn = | |
n + 1 |
and S3n = | |
n + 1 |
∴ | = | × | = | ||||
S3n | n + 1 | 12an² | 6 |
⇒ | = 6 | |
Sn |