Direction: In this question 2 equations numbered I and II are given. You have to solve both the equations and find out the correct option.
-
Ⅰ. 3x2 − 20x −32 = 0
Ⅱ. 2y2 − 3y − 20 = 0
-
- x < y
- x ≤ y
- x > y
- Relationship between x and y cannot be established
- x ≥ y
Correct Option: D
As per the given above question , we can say that
From equation Ⅰ. 3x2 − 20x −32 = 0
⇒ 3x2 − 12x − 8x – 32 = 0
⇒ 3x(x − 4) − 8(x − 4) = 0
⇒ (3x − 8)(x − 4) = 0
∴ x = | , 4 | |
⇒ 2y2 − 8y + 5y − 20 = 0
⇒ 2y(y − 4) + 5(y − 4) = 0
⇒ (2y + 5)(y − 4) = 0
∴ y = 4, - | |