Home » Aptitude » Quadratic Equation » Question

Direction: In this question 2 equations numbered I and II are given. You have to solve both the equations and find out the correct option.

  1. Ⅰ. 3x2 − 20x −32 = 0
    Ⅱ. 2y2 − 3y − 20 = 0
    1. x < y
    2. x ≤ y
    3. x > y
    4. Relationship between x and y cannot be established
    5. x ≥ y
Correct Option: D

As per the given above question , we can say that
From equation Ⅰ. 3x2 − 20x −32 = 0
⇒ 3x2 − 12x − 8x – 32 = 0
⇒ 3x(x − 4) − 8(x − 4) = 0
⇒ (3x − 8)(x − 4) = 0

∴ x =
8
, 4
3
From equation Ⅱ. 2y2 − 3y − 20 = 0
⇒ 2y2 − 8y + 5y − 20 = 0
⇒ 2y(y − 4) + 5(y − 4) = 0
⇒ (2y + 5)(y − 4) = 0
∴ y = 4, -
5
2
Hence no relationship can be established.



Your comments will be displayed only after manual approval.