Mensuration
-  Perimeter of a rhombus is 2p unit and sum of length of diagonals is m unit, then area of the rhombus is
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 12,  
 Side of a rhombus= 2p = p unit 4 2 
 OA = OC = y (let)
 ∴ AC = 2y units
 OB = OD = x (let)
 ∴ BD = 2x units
 From ∆OAB,
 ∠AOB = 90°
 AB² = OA² + OB²⇒ p² = x² + y² 4 
 ⇒ p² = 4x² + 4y² ...(i)
 and 2x + 2y = m
 On squaring both sides,
 4x² + 4y² + 8xy = m²
 ⇒ p² + 8xy = m²
 ⇒ 8xy = m² – p²⇒ 4xy = 1 (m² + p²) 2 ∴ Area of the rhombus = 1 × AC × BD 2 = 1 × 2x × 2y = 1 × 4xy 2 2 = 1 × 1 (m² - p²) 2 2 = 1 (m² - p²) sq. units 4 Correct Option: CUsing Rule 12,  
 Side of a rhombus= 2p = p unit 4 2 
 OA = OC = y (let)
 ∴ AC = 2y units
 OB = OD = x (let)
 ∴ BD = 2x units
 From ∆OAB,
 ∠AOB = 90°
 AB² = OA² + OB²⇒ p² = x² + y² 4 
 ⇒ p² = 4x² + 4y² ...(i)
 and 2x + 2y = m
 On squaring both sides,
 4x² + 4y² + 8xy = m²
 ⇒ p² + 8xy = m²
 ⇒ 8xy = m² – p²⇒ 4xy = 1 (m² + p²) 2 ∴ Area of the rhombus = 1 × AC × BD 2 = 1 × 2x × 2y = 1 × 4xy 2 2 = 1 × 1 (m² - p²) 2 2 = 1 (m² - p²) sq. units 4 
 
	