Mensuration


  1. Perimeter of a rhombus is 2p unit and sum of length of diagonals is m unit, then area of the rhombus is









  1. View Hint View Answer Discuss in Forum

    Using Rule 12,

    Side of a rhombus

    =
    2p
    =
    p
    unit
    42

    OA = OC = y (let)
    ∴ AC = 2y units
    OB = OD = x (let)
    ∴ BD = 2x units
    From ∆OAB,
    ∠AOB = 90°
    AB² = OA² + OB²
    = x² + y²
    4

    ⇒ p² = 4x² + 4y² ...(i)
    and 2x + 2y = m
    On squaring both sides,
    4x² + 4y² + 8xy = m²
    ⇒ p² + 8xy = m²
    ⇒ 8xy = m² – p²
    ⇒ 4xy =
    1
    (m² + p²)
    2

    ∴ Area of the rhombus =
    1
    × AC × BD
    2

    =
    1
    × 2x × 2y =
    1
    × 4xy
    22

    =
    1
    ×
    1
    (m² - p²)
    22

    =
    1
    (m² - p²) sq. units
    4

    Correct Option: C

    Using Rule 12,

    Side of a rhombus

    =
    2p
    =
    p
    unit
    42

    OA = OC = y (let)
    ∴ AC = 2y units
    OB = OD = x (let)
    ∴ BD = 2x units
    From ∆OAB,
    ∠AOB = 90°
    AB² = OA² + OB²
    = x² + y²
    4

    ⇒ p² = 4x² + 4y² ...(i)
    and 2x + 2y = m
    On squaring both sides,
    4x² + 4y² + 8xy = m²
    ⇒ p² + 8xy = m²
    ⇒ 8xy = m² – p²
    ⇒ 4xy =
    1
    (m² + p²)
    2

    ∴ Area of the rhombus =
    1
    × AC × BD
    2

    =
    1
    × 2x × 2y =
    1
    × 4xy
    22

    =
    1
    ×
    1
    (m² - p²)
    22

    =
    1
    (m² - p²) sq. units
    4