Home » Aptitude » Mensuration » Question
  1. Perimeter of a rhombus is 2p unit and sum of length of diagonals is m unit, then area of the rhombus is
    1. 1
      m²p sq.unit
      4
    2. 1
      mp² sq.unit
      4
    3. 1
      (m² - p²) sq.unit
      4
    4. 1
      (p² - m²) sq.unit
      4
Correct Option: C

Using Rule 12,

Side of a rhombus

=
2p
=
p
unit
42

OA = OC = y (let)
∴ AC = 2y units
OB = OD = x (let)
∴ BD = 2x units
From ∆OAB,
∠AOB = 90°
AB² = OA² + OB²
= x² + y²
4

⇒ p² = 4x² + 4y² ...(i)
and 2x + 2y = m
On squaring both sides,
4x² + 4y² + 8xy = m²
⇒ p² + 8xy = m²
⇒ 8xy = m² – p²
⇒ 4xy =
1
(m² + p²)
2

∴ Area of the rhombus =
1
× AC × BD
2

=
1
× 2x × 2y =
1
× 4xy
22

=
1
×
1
(m² - p²)
22

=
1
(m² - p²) sq. units
4



Your comments will be displayed only after manual approval.