-
Perimeter of a rhombus is 2p unit and sum of length of diagonals is m unit, then area of the rhombus is
-
-
1 m²p sq.unit 4 -
1 mp² sq.unit 4 -
1 (m² - p²) sq.unit 4 -
1 (p² - m²) sq.unit 4
-
Correct Option: C
Using Rule 12, 
Side of a rhombus
| = | = | unit | ||
| 4 | 2 |
OA = OC = y (let)
∴ AC = 2y units
OB = OD = x (let)
∴ BD = 2x units
From ∆OAB,
∠AOB = 90°
AB² = OA² + OB²
| ⇒ | = x² + y² | |
| 4 |
⇒ p² = 4x² + 4y² ...(i)
and 2x + 2y = m
On squaring both sides,
4x² + 4y² + 8xy = m²
⇒ p² + 8xy = m²
⇒ 8xy = m² – p²
| ⇒ 4xy = | (m² + p²) | |
| 2 |
| ∴ Area of the rhombus = | × AC × BD | |
| 2 |
| = | × 2x × 2y = | × 4xy | ||
| 2 | 2 |
| = | × | (m² - p²) | ||
| 2 | 2 |
| = | (m² - p²) sq. units | |
| 4 |