Home » Aptitude » Simplification » Question
  1. Find the sum of 1 −
    1
    + 1 −
    2
    + 1 −
    3
    + .....1 −
    n
    n + 1n + 1n + 1n + 1
    1. n
    2. 1
      n
      2
    3. (n + 1)
    4. 1
      (n + 1)
      2
Correct Option: B

1 −
1
+ 1 −
2
+ 1 −
3
+ .....1 −
n
n + 1n + 1n + 1n + 1

= n −
1
+
2
+
3
+ ....+
n
n + 1n + 1n + 1n + 1

= n −
1 + 2 + 3 +....+ n
n + 1

= n −
n(n + 1)
= n −
n
=
n
=
1
n
2(n + 1)222



Your comments will be displayed only after manual approval.