-
On what sum does the difference between the compound interest and the simple interest for 3 years at 10% is ₹ 31 ?
-
- ₹ 1500
- ₹ 1200
- ₹ 1100
- ₹ 1000
Correct Option: D
Let the sum be P.
R = 10% , T = 3 years
Using the given formula ,
S.I. = | |
100 |
S.I. = | = | P | ||
100 | 10 |
C.I. = | ![]() | ![]() | 1 + | ![]() | T | − 1 | ![]() | P | |
100 |
C.I. = | ![]() | ![]() | 1 + | ![]() | 3 | − 1 | ![]() | P | |
100 |
C.I. = | ![]() | ![]() | ![]() | 3 | − 1 | ![]() | P | |
10 |
C.I. = | ![]() | − 1 | ![]() | P = | P | ||
1000 | 1000 |
∴ C.I. - S.I. = ₹ 31
⇒ | P − | P = 31 | ||
1000 | 10 |
⇒ | P = 31 | |
1000 |
⇒ | P = 31 | |
1000 |
⇒ P = 1000
∴ Sum = ₹ 1000
We can find required answer with the help of given formula :
Here, C.I. – S.I. = ₹ 31 , R = 10% , T = 3 years , P = ?
C.I. − S.I. = P | ![]() | ![]() | 2 | × | ![]() | 3 + | ![]() | ||
100 | 100 |
31 = P | ![]() | ![]() | 2 | × | ![]() | 3 + | ![]() | ||
100 | 100 |
31 = P × | | × | |
100 | 10 |
P = ₹ 1000