-
If area of an equilateral triangle is a and height b, then value of b²/a is :
-
- 3
- 1/3
- √3
- 1/√3
- 3
Correct Option: C
Using Rule 1,
AD = b
Let BD = DC = x
Each angle = 60° [∵ ∆ is equilateral]
∴ tan 60° = | |
BD |
⇒ √3 = | ⇒ x = | ||
x | √3 |
⇒ BC = 2x = | |
√3 |
∴ Area of the triangle = | × BC × AD | |
2 |
a = | × | × b | ||
2 | √3 |
⇒ | = √3 | |
a |
Let AB = BC = AC = S Area of equilateral ∆ i.e. a
= | S² | |
4 |
Also AD (height)
√S² - | ![]() | ![]() | ² | = √S² - | = √ | |||
2 | 4 | 4 |
⇒ b = | ∴ | ||
2 | a |
= | ![]() | ![]() | ² | |
2 | ||||
S² | ||||
4 |
= | × | ||
4 | √3S² |
= | = √3 | |
√3 |