Home » Aptitude » Mensuration » Question
  1. If in a ∆ABC, the medians CD and BE intersect each other at 0, then the ratio of the areas of ∆ODE and ∆ABC is
    1. 1 : 6
    2. 6 : 1
    3. 1 : 12
    4. l2 : 1
Correct Option: C


In ∆s ODE and BOC,
∠BOC = ∠DOE
∠DEO = ∠OBC; ∠ODE = ∠OCB
∴ Both triangles are similar,

∆ODE
=
DE²
∆BOCBC²

DE || BC and DE = 1/2 BC
and area of ∆ ABC
= 3 × Area of ∆OBC
∆ODE
=
1
×
1
=
1
∆ABC3412

or, 1 : 12



Your comments will be displayed only after manual approval.