-
The base and altitude of a right angled triangle are 12 cm and 5 cm respectively. The perpendicular distance of its hypotenuse from the opposite vertex is
-
-
4 4 cm 13
-
4 8 cm 13 - 5 cm
- 7 cm
-
Correct Option: B
In ∆ABC,
AC = √12² + 5² = √144 + 25
= √169 = 13
Let AO = x. Then
OC = 13 – x
OB² = 5² – x² = 25 – x² ....(i)
OB² = 12² – (13 – x)²
= 144 – 169 – x2 + 26x ....(ii)
From (i) and (ii),
25 – x² = –25 – x² + 26x
→ 26x = 50
⇒ x = | = | ||
26 | 13 |
∴ OB² = 25 – x²
= 25 - | 25 | ² | ||
13 |
∴ OB² = 25 – x² = 25 – | 25 | ² | ||
13 |
OB² = 25 | 1 - | = 25 × | ||||
169 | 169 |
OB = √ | = | = | = 4 | cm | ||||
169 | 13 | 13 | 13 |