-
The marked price of a watch was ₹ 720. A man bought the same for ₹ 550.80, after getting two successive discounts, the first at 10 %. What was the second discount rate?
-
- 12%
- 14%
- 15%
- 18%
Correct Option: C
Marked price = ₹ 720
Actual price = ₹ 550.80
First discount D1 = 10 %
Let the second discount = D2 %
As we know the formula,
Successive discounts of D1 % and D2 % is overall equals to = | ![]() | 10 + D2 − | ![]() | % | |
100 |
= 10 + D2 − | |
100 |
= 10 + D2 − | |
10 |
= 10 + D2 - 0.1D2
= 10 + 0.9D2
According to question,
720 x ( 100 - 10 - 0.9D2) % = 550.80
⇒ 720 x ( 90 - 0.9D2) = 550.80 x 100
⇒ 90 - 0.9D2 = | ||
720 |
⇒ 90 - 0.9D2 = | ||
72 |
⇒ 90 - 0.9D2 = | ||
8 |
⇒ 0.9D2 = 90 - | ||
8 |
⇒ 0.9D2 = | ||
8 |
⇒ 0.9D2 = | ||
8 |
⇒ 0.9D2 = | ||
2 |
⇒ D2 = | × 0.9 | |
2 |
⇒ D2 = 27 × | × 9 | |
2 |
⇒ D2 = 3 × | = | ||
2 | 2 |
∴ Second discount = 15%
2nd Method to solve this question.
Here, Marked price = ₹ 720
Selling price = ₹ 550.80
First discount D1 = 10 %
Let assume the second discount = D2 %
As we know the formula,
Selling Price = Market Price | ![]() | ![]() | ![]() | ![]() | ||
100 | 100 |
550.80 = 720 | ![]() | ![]() | ![]() | ![]() | ||
100 | 100 |
⇒ 550.80 = 720 × | × | ||
100 | 100 |
⇒ 550.80 = 72 × | × | ||
1 | 100 |
⇒ 550.80 = 72 × 9 x | |
100 |
⇒ 550.80 x 100 = 72 × 9 x ( 100 - D2 )
⇒ 55080 = 648 x ( 100 - D2 )
⇒ 55080 = 648 x 100 - 648 x D2
⇒ 55080 = 64800 - 648 x D2
⇒ 648 x D2 = 64800 - 55080
⇒ 648 x D2 = 9720
⇒ D2 = | ||
648 |
⇒ D2 = 15 %