-
The Fourth term of an Arithmetic Progression is 37 and the Sixth term is 12 more than the Fourth term. What is the sum of the Second and Eight terms?
-
- 54
- 64
- 74
- 84
Correct Option: C
Let us assume the first number is a and common difference is d.
According to question,
4th term of A.P = 37
a + ( n - 1 ) x d = 37
Put the value of a , n and d, we will get,
a + (4 - 1 ) x d = 37
a + 3d = 37..................(1)
sixth term is 12 more than the fourth term,
6th term = 12 + 4th term
a + ( n - 1 ) x d = 12 + 37
a + ( 6- 1 ) x d = 39
a + 5d = 39................(2)
subtract the equation (1) from (2)
a + 5d - a - 3d = 39 - 37
5d - 3d= 2
2d = 2
d = 1
Put the value of d in equation (1), we will get
a + 3 x 1 = 37
a = 37 - 3
a = 34
Second term = a + (n - 1) x d = 34 + (2 - 1) x 1 = 34 + 1 = 35
Six term = a + (n - 1) x d = 34 + (6 - 1) x 1 = 34 + 5 = 39
Sum of Second and Six term = 35 + 39 = 74
Sum of Second and Six term = 74
Answer is 74.