Surds and Indices


  1. If 3x - 3x-1 = 18, then xx is equal to









  1. View Hint View Answer Discuss in Forum

    ∵ 3x - 3x - 1 = 18
    ⇒ 3x - 1(3 - 1) = 18
    Apply the Algebra law,
    If aX = aY then X will be equal to Y.
    means X = Y;

    Correct Option: C

    ∵ 3x - 3x - 1 = 18
    ⇒ 3x - 1(3 - 1) = 18
    ⇒ 3x - 1(2) = 18
    ⇒ 3x - 1 = 18/2
    ⇒ 3x - 1 = 9
    ⇒ 3x - 1 = 32
    Apply the Algebra law,
    If aX = aY then X will be equal to Y.
    means X = Y;
    ⇒ x - 1 = 2
    ⇒ x = 3
    Then xx = (3)3 = 27


  1. If 2 x - 1 + 2 x + 1 = 320, then find the value of x ?









  1. View Hint View Answer Discuss in Forum

    ∵ 2x - 1 + 2x + 1 = 320
    Apply the law of Algebra
    ⇒ 2x - 1(1 + 2 2 ) = 320
    Solve the equation.

    Correct Option: C

    ∵ 2x - 1 + 2x + 1 = 320
    Apply the law of Algebra
    ⇒ 2x - 1(1 + 2 2 ) = 320
    ⇒ 2x - 1(1 + 4 ) = 320
    ⇒ 2x - 1 x 5 = 320
    ⇒ 2x - 1 = 64 = 2 x 2 x 2 x 2 x 2 x 2
    ⇒ 2x - 1 = 26
    if pX = pY then X will be equal to Y. means X = Y;
    ⇒ x - 1 = 6
    ∴ x = 7



  1. Value of 5 + 2√6 - 1/√5 - 2√6 is









  1. View Hint View Answer Discuss in Forum

    5 + 2√6 - 1/√5 - 2√6
    = ((√5 + 2√6 x √5 - 2√6 ) - 1)/√5 - 2√6

    Apply the formula of Algebra.
    ( a + b ) x (a - b ) = a2 - b2

    Correct Option: B

    5 + 2√6 - 1/√5 - 2√6
    = ((√5 + 2√6 x √5 - 2√6 ) - 1)/√5 - 2√6

    Apply the formula of Algebra.
    ( a + b ) x (a - b ) = a2 - b2

    = (√(5)2 - (2√6 )2 - 1)/√5 - 2√6
    = (√25 - 4 x 6 - 1) /√5 - 2√6
    = (√25 - 24 - 1) /√5 - 2√6
    = (√ 1 - 1 )/√5 - 2√6
    = (1 - 1 )/√5 - 2√6
    = 0/√5 - 2√6
    = 0


  1. Find the value of (10)200 ÷ (10)196 .











  1. View Hint View Answer Discuss in Forum

    Given equation is
    (10)200 ÷ (10)196
    Apply the law of Algebra
    am ÷ an = am ? n

    = (10)200 - 196

    Correct Option: A

    Given equation is
    (10)200 ÷ (10)196
    Apply the law of Algebra
    am ÷ an = am ? n

    = (10)200 - 196
    = 104
    = 10000



  1. If 2x - 1 + 2x + 1 = 2560, find the value of x.











  1. View Hint View Answer Discuss in Forum

    2x - 1 + 2x + 1 = 2560
    2x - 1 + 2x - 1 + 2 = 2560
    Apply the Law of Algebra
    Solve the equation.

    Correct Option: A

    2x - 1 + 2x + 1 = 2560
    2x - 1 + 2x - 1 + 2 = 2560
    Apply the Law of Algebra
    2x - 1 + 2x - 1 x 2 2 = 2560
    ⇒ 2x - 1 ( 1 + 22 ) = 2560
    ⇒ 2x - 1 = 2560/5 = 512 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
    ⇒ 2x - 1 = 29
    x - 1 = 9
    x = 9 + 1 = 10