Surds and Indices


  1. Solve the below equation and find the value of ?.

    (13)4 = ?











  1. View Hint View Answer Discuss in Forum

    ? = √(13)4 = √13 x 13 x 13 x 13
    Apply the rule of square root.

    Correct Option: B

    ? = √(13)4 = √13 x 13 x 13 x 13
    Apply the rule of square root.
    = 13 x 13 = 169


  1. 1/1 + xb - a + xc - a + 1/1 + xa-b + xc - b + 1/1 + xb - c+ xa - c = ?









  1. View Hint View Answer Discuss in Forum

    ? = 1/ ( 1 + xb - a + xc - a ) + 1/ ( 1 + xa - b + xc - b ) + 1 / ( 1 + xb - c + xa - c )
    Apply the law of algebra and solve the given equation.
    ⇒ ? =1/ ( 1 + xb/xa + xc/xa ) + 1/ ( 1+ xa/xb + xc/xb ) + 1/ ( 1 + xb/xc + xa/xc )


    Correct Option: B

    ? = 1/ ( 1 + xb - a + xc - a ) + 1/ ( 1 + xa - b + xc - b ) + 1 / ( 1 + xb - c + xa - c )
    Apply the law of algebra and solve the given equation.
    ⇒ ? =1/ ( 1 + xb/xa + xc/xa ) + 1/ ( 1+ xa/xb + xc/xb ) + 1/ ( 1 + xb/xc + xa/xc )
    ⇒ ? = xa/ ( xa+xb+xc ) + xb/ ( xb + xa+ xc ) + xc/ ( xc+xb+xa )
    ⇒ ? = ( xa + xb + xc ) / ( xa + xb + xc ) = 1



  1. If a = √3/2, then 1 + a + √1 - a =?









  1. View Hint View Answer Discuss in Forum

    Let us assume
    P = √1 + a + √1 - a
    Square on both side and put the value of a in solved equation.

    Correct Option: D

    Let us assume
    P = √1 + a + √1 - a
    Square on both side,
    P 2 = ( √1 + a + √1 - a ) 2
    Use the formula ( a + b ) 2 = a 2 + b 2 + 2ab
    we will get

    P 2 = (1 + a) + (1- a) + 2 √1 + a x √1 - a
    P 2 = (1 + a) + (1- a) + 2 √(1 + a ) x ( 1 - a )
    P 2 = 2 + 2 √1 - a2
    P 2 = 2 (1 + √1 - a2)
    Now put the value of a which is given in question;
    P 2 = 2 (1 + √1 - ( √3/2 )2)
    P 2 = 2(1 + √1 - 3/4 )
    P 2 = 2(1 + √1/4 )
    P 2 = 2(1 + 1/2) = 2 x 3/2 = 3
    P= √3
    ∴ (√1 + a + √1 - a) = √3


  1. If (p/q)n - 1 = (q/p)n - 3, then the value of n is









  1. View Hint View Answer Discuss in Forum

    Given equation is below
    (p/q)n - 1 = (q/p)n - 3
    Apply the law of Fractional Exponents and Laws of Exponents
    a - m = 1/a m
    or
    am = 1/a - m
    and
    if pX = pY then X will be equal to Y. means X = Y;

    Correct Option: D

    Given equation is below
    (p/q)n - 1 = (q/p)n - 3
    Apply the law of Fractional Exponents and Laws of Exponents
    a - m = 1/a m
    or
    am = 1/a - m
    (p/q)n - 1 = (q) - (n - 3) x 1/ (p) - (n - 3)
    (p/q)n - 1 = (p) 3 - n x 1/ (q) 3 - n
    (p/q)n - 1 = (p/q) 3 - n
    if pX = pY then X will be equal to Y. means X = Y;
    ⇒ n - 1 = 3 - n
    ⇒ 2n = 4
    ⇒ n = 2



  1. If (1/5 )3a = 0.008 Find the value of ( 0.25)a











  1. View Hint View Answer Discuss in Forum

    (1/5 )3a = 0.008 = 8/1000 = 1/125 = (1/5 )3
    Apply the Algebra Law and Solve the equation.

    Correct Option: C

    (1/5 )3a = 0.008 = 8/1000 = 1/125 = (1/5 )3
    Apply the Algebra Law and Solve the equation.
    ⇒ 3a = 3
    ∴ a = 1
    ∴ ( 0.25 )a = ( 0.25 )1 = 0.25