- 
					 The greatest whole number, by which the expression n4 + 6n3 +11n2 + 6n + 24 is divisible for every natural number n, is
- 
                        -  6 
 
- 24
- 12
- 48
 
-  6 
Correct Option: D
For n = 1
n4 + 6n3 +11n2 + 6n + 24
⇒  n4 + 6n3 +11n2 + 6n + 24 = 1 + 6 + 11 + 6 + 24 = 48
For n = 2
n4 + 6n3 +11n2 + 6n + 24 = 16 + 48 + 44 + 12 + 24
⇒ n4 + 6n3 +11n2 + 6n + 24 = 144 , which is divisible by 48.
Clearly, 48 is the required number.
 
	