-
One of the angles of a right-angled triangle is 15°, and the hypotenuse is 1 metre. The area of the triangle (in square cm.) is
-
- 1220
- 1200
- 1250
- 1215
- 1220
Correct Option: C
sin 15° = sin (45° – 30°)
= sin 45° × cos 30° – cos 45° × sin 30°
= | × | - | × | ||||
√2 | 2 | √2 | 2 |
= | - | = | |||
2√2 | 2√2 | 2√2 |
and cos 15° = cos (45°– 30°)
= cos 45°. cos 30° + sin 45°. sin 30°
= | × | + | × | ||||
√2 | 2 | √2 | 2 |
= | + | = | |||
2√2 | 2√2 | 2√2 |
∴ AB = AC sin 15°
= | metre | |
2√2 |
BC = AC cos 15° = | metre | |
2√2 |
∴ Area of ∆ABC = | × AB × BC | |
2 |
= | ![]() | × | × | ![]() | square metre | |||
2 | 2√2 | 2√2 |
= | ![]() | ![]() | square metre | |
16 |
= | square metre | |
8 |
= | = 1250 square metre | |
8 |