-
In triangle ABC, DE || BC where D is a point on AB and E is a point on AC. DE divides the area of ∆ABC into two equal parts. Then DB : AB is equal to
-
- √2 : (√2 + 1)
- √ : (√2 - 1)
- (√2 - 1) : √2
- (√2 + 1): √2
- √2 : (√2 + 1)
Correct Option: C
DE || BC Area of ∆ADE = Area of quadrilateral BDEC
⇒ Area of ∆ABC = 2 × Area of ∆ADE
In ∆ADE and ∆ABC,
∠D = ∠B ; ∠E = ∠C
∴ ∆ADE ~ ∆ABC
∴ | = | ||
Area of ∆ADE | AD² |
⇒ | = 2 ⇒ AB = √2AD | |
AD² |
⇒ AB = √2(AB – DB)
⇒ √2AB – AB = √2 DB
⇒ AB (√2 – 1) = √2DB
⇒ | = | ||
AB | √2 |