- 
					 In triangle ABC, DE || BC where D is a point on AB and E is a point on AC. DE divides the area of ∆ABC into two equal parts. Then DB : AB is equal to
 
- 
                        -  √2 : (√2 + 1)
 
-   √ : (√2 - 1)
 
-   (√2 - 1) : √2
 
- (√2 + 1): √2
 
-  √2 : (√2 + 1)
Correct Option: C
DE || BC Area of ∆ADE = Area of quadrilateral BDEC 
⇒ Area of ∆ABC = 2 × Area of ∆ADE 
In ∆ADE and ∆ABC, 
∠D = ∠B  ; ∠E = ∠C 
∴ ∆ADE ~ ∆ABC
| ∴ | = | ||
| Area of ∆ADE | AD² | 
| ⇒ | = 2 ⇒ AB = √2AD | |
| AD² | 
⇒ AB = √2(AB – DB)
⇒ √2AB – AB = √2 DB
⇒ AB (√2 – 1) = √2DB
| ⇒ | = | ||
| AB | √2 | 
 
	