-
Three equal circles of unit radius touch one another. Then the area of the circle circumscribing the three circles is
-
- 6π(2 + √3)²
-
π (2 + √3)² 6 -
π (2 + √3)² 3 - 3π(2 + √3)²
Correct Option: C
AB = BC = AC = 2 cm.
(∵ Radius of each circle = 1 cm.)
∴ AP = | × 2 = √3 cm. | |
2 |
Point O is the centroid.
OA = | × √3 = | ||
3 | √3 |
OM = | + 1 = | cm. | ||
√3 | √3 |
OM = radius of larger circle
∴ Required area = πR²
= | ² | |||
√3 |
= | (2 + √3)² | |
3 |