Home » Aptitude » Mensuration » Question
  1. The base of a right pyramid is an equilateral triangle of side 10√3 cm. If the total surface area of the pyramid is 270√3 sq. cm, its height is
    1. 12√3cm
    2. 10 cm
    3. 10√3cm
    4. 12 cm
Correct Option: D


AB = 10√3 cm
BE = 5√3 cm
AE = √(10√3)² - (5√3)²
= √225 = 15 cm

OE =
1
× 15 = 5 cm.
3

Let the height of pyramid be h cm, then
Slant height = √h² + 5² = √h² + 25
Now, Total surface area = Area of the 3 faces + Area of base
= 3
1
base × slantheight + Area of the base
2

Total surface area =
1
× (perimeter of base) × (slant height) + Area of base [base of all the 3 triangular faces is the edge of the equilateral triangle].
2

⇒ 270√3 -
1
× 30√3 × √h² + 25 +
3
× (10√3
24

⇒ 270√3 - 15√3h² + 25 + 75√3
⇒ 15√3h² + 25 = 195√3
⇒√h² + 25 = 13
⇒ h² + 25 = 169
⇒ h² = 169 – 25 = 144
⇒ h = 144 = 12 cm



Your comments will be displayed only after manual approval.