Home » Aptitude » Mensuration » Question
  1. ABCD is a parallelogram. P and Q are the mid-points of BC and CD respectively. What is the ratio between the area of ∆APQ to that of the parallelogram ABCD?
    1. 3 : 7
    2. 3 : 8
    3. 3 : 5
    4. 4 : 9
Correct Option: B


In ∆BCD,
PQ || BD and PQ = 1/2 BD

⇒ ar (∆CPQ) =
1
ar (BDC)
4

⇒ ar (∆CPQ)
=
1
(||gmABCD)
8

1
ar (||gmABCD) = ar (∆BCD)
2

BP =
1
BC
2

∴ ar (∆ ABP) =
1
ar (||gmABCD)
4

Similarly, ar (∆AQD)
=
1
ar (||gmABCD)
4

∴ ar (∆APQ) = ar (gm ABCD )– [ar ∆ABP + ar (∆AQD) + ar (∆CPQ)]
= ar (||gmABCD) –
1
+
1
+
1
ar (||gmABCD)
448

= 1 -
5
ar (||gmABCD)
8

=
3
ar (||gmABCD)
8



Your comments will be displayed only after manual approval.