-
ABCD is a parallelogram. P and Q are the mid-points of BC and CD respectively. What is the ratio between the area of ∆APQ to that of the parallelogram ABCD?
-
- 3 : 7
- 3 : 8
- 3 : 5
- 4 : 9
- 3 : 7
Correct Option: B
In ∆BCD,
PQ || BD and PQ = 1/2 BD
⇒ ar (∆CPQ) = | ar (BDC) | |
4 |
⇒ ar (∆CPQ)
= | (||gmABCD) | |
8 |
∵ | ar (||gmABCD) = ar (∆BCD) | |||
2 |
BP = | BC | |
2 |
∴ ar (∆ ABP) = | ar (||gmABCD) | |
4 |
Similarly, ar (∆AQD)
= | ar (||gmABCD) | |
4 |
∴ ar (∆APQ) = ar (gm ABCD )– [ar ∆ABP + ar (∆AQD) + ar (∆CPQ)]
= ar (||gmABCD) – | + | + | ar (||gmABCD) | |||||
4 | 4 | 8 |
= | 1 - | ar (||gmABCD) | |||
8 |
= | ar (||gmABCD) | |
8 |