Motion in a Plane
- A→ and B→ are two vectors and θ is the angle between
them, if | A→ × B→ | = √3(A→ . B→), the value of θ is
-
View Hint View Answer Discuss in Forum
| A→ × B→ | = √3(A→ . B→)
⇒ AB sinθ = √3 AB cosθ
⇒ tan θ = √3 ⇒ θ = 60°Correct Option: D
| A→ × B→ | = √3(A→ . B→)
⇒ AB sinθ = √3 AB cosθ
⇒ tan θ = √3 ⇒ θ = 60°
- Six vectors, a→ through f→ have the magnitudes and directions indicated in the figure. Which of the following statements is true?
-
View Hint View Answer Discuss in Forum
Using the law of vector addition, ( d→ + e→ ) is as shown in the fig.
∴ d→ + e→ = f→Correct Option: C
Using the law of vector addition, ( d→ + e→ ) is as shown in the fig.
∴ d→ + e→ = f→
- Vectors A→ , B→ and C→ are such that A→ . B→ = 0 and A→ . C→ = 0 Then the vector parallel to A→ is
-
View Hint View Answer Discuss in Forum
Vector triple product
A→ × (B→ × C→) = B→(A→ . C→) - C→(A→ . B→) = 0
⇒ A→ || (B→ × C→)
[ ∵ A→ . B→ = 0 and A→ . C→ = 0 ]
(A→ + B→)2 = (C→)2
⇒ A→2 + B→2 + 2A→ . B→ = C2
⇒ 32 + 42 + 2A→ . B→ = 52
⇒ 2A→ . B→ = 0
or ⇒ A→ . B→ = 0
∴ A→ ⊥ B→
Hence A2 + B2 = C2 . Hence A→ ⊥ B→Correct Option: D
Vector triple product
A→ × (B→ × C→) = B→(A→ . C→) - C→(A→ . B→) = 0
⇒ A→ || (B→ × C→)
[ ∵ A→ . B→ = 0 and A→ . C→ = 0 ]
(A→ + B→)2 = (C→)2
⇒ A→2 + B→2 + 2A→ . B→ = C2
⇒ 32 + 42 + 2A→ . B→ = 52
⇒ 2A→ . B→ = 0
or ⇒ A→ . B→ = 0
∴ A→ ⊥ B→
Hence A2 + B2 = C2 . Hence A→ ⊥ B→
- A particle is moving such that its position coordinate (x, y) are
(2m, 3m) at time t = 0
(6m, 7m) at time t = 2s and
(13m, 14m) at time t = 5s.
Average velocity vector (V→av) from t = 0 to t = 5s is :
-
View Hint View Answer Discuss in Forum
V→av = ∆r→(displacement) ∆t(time taken) = (13 - 2)î + (14 - 3)ĵ = 11 (î + ĵ) 5 - 0 5 Correct Option: D
V→av = ∆r→(displacement) ∆t(time taken) = (13 - 2)î + (14 - 3)ĵ = 11 (î + ĵ) 5 - 0 5
- If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is :
-
View Hint View Answer Discuss in Forum
|A→ + B→| = |A→ - B→|
Squaring on both sides
|A→ + B→|2 = |A→ - B→|2
⇒ A→ . A→ + 2A→ . B→ + B→ . B→ = A→ . A→ - 2A→ . B→ + B→ . B→
⇒ 4A→ . B→ = 0 ⇒ 4A→ . B→ cos θ = 0
⇒ cos θ = 0 ⇒ θ = 90°Correct Option: B
|A→ + B→| = |A→ - B→|
Squaring on both sides
|A→ + B→|2 = |A→ - B→|2
⇒ A→ . A→ + 2A→ . B→ + B→ . B→ = A→ . A→ - 2A→ . B→ + B→ . B→
⇒ 4A→ . B→ = 0 ⇒ 4A→ . B→ cos θ = 0
⇒ cos θ = 0 ⇒ θ = 90°