Motion in a Plane
-
If vectors A→ = cos ωtî + sin ωtĵ and B→ = cos ωt î + sin ωt ĵ are functions of time, then the value 2 2
of t at which they are orthogonal to each other is :
-
View Hint View Answer Discuss in Forum
Two vectors are
A→ = cos ωtî + sin ωtĵB→ = cos ωt î + sin ωt ĵ 2 2
For two vectors A→ and B→ to be orthogonal A→ . B→ = 0A→ . B→ = 0 = cos ωt . cos ωt î + sin ωt . sin ωt ĵ 2 2 = cos ωt - ωt = cos ωt 2 2 So , ωt = π ∴ t = π 2 2 ω
Correct Option: B
Two vectors are
A→ = cos ωtî + sin ωtĵB→ = cos ωt î + sin ωt ĵ 2 2
For two vectors A→ and B→ to be orthogonal A→ . B→ = 0A→ . B→ = 0 = cos ωt . cos ωt î + sin ωt . sin ωt ĵ 2 2 = cos ωt - ωt = cos ωt 2 2 So , ωt = π ∴ t = π 2 2 ω