-
If vectors A→ = cos ωtî + sin ωtĵ and B→ = cos ωt î + sin ωt ĵ are functions of time, then the value 2 2
of t at which they are orthogonal to each other is :
-
-
t = π 2ω -
t - π ω - t = 0
-
t - π 4ω
-
Correct Option: B
Two vectors are
A→ = cos ωtî + sin ωtĵ
| B→ = cos | î + sin | ĵ | ||
| 2 | 2 |
For two vectors A→ and B→ to be orthogonal A→ . B→ = 0
| A→ . B→ = 0 = cos ωt . cos | î + sin ωt . sin | ĵ | ||
| 2 | 2 |
| = cos | ![]() | ωt - | ![]() | = cos | ![]() | ![]() | |||
| 2 | 2 |
| So , | = | ∴ t = | |||
| 2 | 2 | ω |

