Cubes
Direction: Four colours namely Blue, Green Red and White are used to paint a cube such that each face is painted in exactly one colour and each colour is painted on at least one face. The cube is now cut into 120 identical pieces by making least number of cuts.
- What is the number of cubes with no face painted?
-
View Hint View Answer Discuss in Forum
For least number of cuts 120 = 4 x 5 x 6 i.e number of cuts must be 3, 4 and 5 in three planes in this case number of cubes on a face is either 6 x 5 = 30 or 6 x 4 = 24 or 4 x 5 = 20 cubes . And number of cuboids on an edge is 4 or 5 or 6
Number of cuboids with no face painted is (4 - 2)(5 - 2)(6 - 2) = 2 x 3 x 4 = 24Correct Option: A
For least number of cuts 120 = 4 x 5 x 6 i.e number of cuts must be 3, 4 and 5 in three planes in this case number of cubes on a face is either 6 x 5 = 30 or 6 x 4 = 24 or 4 x 5 = 20 cubes . And number of cuboids on an edge is 4 or 5 or 6
Number of cuboids with no face painted is (4 - 2)(5 - 2)(6 - 2) = 2 x 3 x 4 = 24
Direction: 216 cubes of similar size are arranged in the form of a bigger cube (6 cubes on each side, i.e., 6 x 6 x 6) one cube from a corner is removed and then all the exposed surfaces are painted.
- How many of the cubes have exactly 4 face painted?
-
View Hint View Answer Discuss in Forum
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
No cubes are with 4 face painted.Correct Option: D
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
No cubes are with 4 face painted.
- How many of the cubes have at least 2 faces painted?
-
View Hint View Answer Discuss in Forum
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
From the above explanation number of the cubes with at least 2 faces painted is 45 + 10 = 55.Correct Option: A
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
From the above explanation number of the cubes with at least 2 faces painted is 45 + 10 = 55.
- How many of the cubes have at most faces painted?
-
View Hint View Answer Discuss in Forum
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
From the above explanation number of the cubes with at most 2 faces painted is 64 + 96 + 45 = 205.
Or else 215 - 10 = 205Correct Option: A
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
From the above explanation number of the cubes with at most 2 faces painted is 64 + 96 + 45 = 205.
Or else 215 - 10 = 205
- How many of the cubes have 2 faces painted?
-
View Hint View Answer Discuss in Forum
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
From the above explanation number of the cubes with 2 faces painted is 45.Correct Option: C
Let us see the changes due to removal of cube from corner-
Number of vertices with three faces exposed (Painted) is 7 + 3 = 10
Number of Cubes with 2 sides exposed (Painted): In general one edge gives us 4 (n - 2 in general case) cubes with two face painted but in this case out of 12 edges only 9 edges will give us 4 cubes in one edge and remaining 3 edges will give us 3 cubes from one edge, hence total number of edge is 9 x 4 + 3 x 3 = 45
Number of Cubes with 1 side exposed (Painted): It will remain same as normal case i.e. 6(42) = 96
Number of Cubes with no sides exposed (Painted) is 43 = 64
From the above observation:
From the above explanation number of the cubes with 2 faces painted is 45.