Home » Verbal Reasoning » Cubes » Question

Direction: 343 cubes of similar size are arranged in the form of a bigger cube (7 cubes on each side, i.e., 7 x 7 x 7) and kept alongside an edge (or side) of a room, all the exposed surfaces( in this case there are 4) are painted.

  1. How many of the cubes have at most faces painted?
    1. 341
    2. 244
    3. 342
    4. None of these
Correct Option: A

Out of 6 faces of 4 faces are exposed and those were painted.
Number of vertices with three faces exposed (Painted) is 2
Number of vertices with 2 faces exposed (Painted) is 4
Number of vertices with 1 faces exposed (Painted) is 2
Number of vertices with 0 faces exposed (Painted) is 0
Number of sides with 2 sides exposed (Painted) is 5
Number of sides with 1 sides exposed (Painted) is 6
Number of sides with no sides exposed (Painted) is 1
From the above observation:
Number of cubes with 3 faces Painted is 2
Number of cubes with 2 faces Painted is given by sides which is exposed from two sides and required number of cubes is 6 x 4 + 1 x 5 = 29 since there are 4 edges will give us 6 cubes from 1 edge and 1 edge (between two vertices which are painted or exposed from 3 sides) will give us only 5 cubes.
Number of cubes with 1 face Painted is given by faces which is exposed from one sides and required number of cubes is 36 x 2 + 30 x 2 = 132
Number of cubes with 0 face Painted is given by difference between total number of cubes - number of cubes with at least 1 face painted = 343 - 2 - 29 - 132 = 180
In other words number of cubes with 0 painted is 6 x 6 x 5 =180
From the above explanation number of the cubes with at most 2 faces painted is
180 + 132 + 29 = 341.
Or else 343 - 2 = 341



Your comments will be displayed only after manual approval.