-
For the signal x(n) = b|n|, b > 0 The z-transform is given by—
-
-
x(z) = z – bz , b < |z| < 1 z – b bz – 1 b -
x(z) = z – bz , b < |z| < 1 z – b bz + 1 b -
x(z) = z – bz , 1 1 b < |z| < b z – b bz - 1 b -
x(z) = z – bz , 1 1 b < |z| < b z – b bz + 1 b
-
Correct Option: A
x(n) = b|n|, b > 0
or x(n) = b|n| u(n) + b– n u[– n – 1]
The sequence x(n) = b|n| for |b| < 1,
function is converges while for sequence x(n) = bn for |b| > 1, function is diverges
bn u[n] ←z→ | , |z| > b | 1 – bz– 1 |
or bn u[n] ←z→ | , |z| > b b | z – b |
b– 1 u[– n – 1] ←z→ | |z| < | |||
1 – b– 1 z– 1 | b |
or b– 1 u[– n – 1] ←z→ | |z| < | |||
bz– 1 | b |
Thus, the z-transform for the composite function is
x(z) = | – | , b < |z| < | ||||
z – b | bz – 1 | b |
Hence, alternative (A) is the correct choice.