-
If x(z) = log (1 + az– 1), |z| > |a| then x(n) is given by—
-
-
x(n) = – an u(n – 1) n -
x(n) = – (– a)n u(n – 1) n -
x(n) = – (– a)n u(n + 1) n - None of these
-
Correct Option: B
If x(n) ←z→ X(z)
then nx(n) ←z→ – z | X(z) | |||
dz | 1 + az– 1 |
and if X (Z) = log (1 + az– 1)
then nx(n) ←z→ – z | X(z) | |||
dZ | 1 + az– 1 |
As we know that
– an u(n) ←z→ | 1 + az– 1 |
Similarly, by using time-shifting property.
(– a)n– 1 u(n – 1) ←z→ | · z– 1 | 1 + az– 1 |
or a(– a)n– 1 u(n – 1) = | 1 + az– 1 |
or – (– a)n u(n – 1) = | 1 + az– 1 |
or – (– a)n u(n – 1) = nx(n)
or x(n) = | u(n – 1) | n |
Hence, alternative (B) is the correct choice.