- 
					 For the system governed by the set of equations:
dx1/dt = 2x1 + x2 + 4
dx2 /dt = – 2x1 + 4
y = 3x1
the transfer function Y(s)/U(s) is given by 
- 
                        
- 3(s + 1)/(s² – 2s + 2)
 - 3(2s + 1)(s² – 2s + 1)
 - (s + 1)/(s² – 2s + 1)
 - 3(2s + 1)(s² – 2s + 2)
 
 
Correct Option: A
| = 2x1 + x2 + 4 | |
| dt | 
| = - 2x1 + 4 | |
| dt | 
y = 3x1
Now from the standard equation xi = Ax + BU
y = Cx + DU
![]()  | x1 | ![]()  | = | ![]()  | 2 | 1 | ![]()  | ![]()  | x1 | ![]()  | + | ![]()  | 1 | ![]()  | [4] | 
| x2 | - 2 | 2 | x2 | 1 | 
| y = [3 0] | ![]()  | x1 | ![]()  | 
| x2 | 
| Transfer function | C(SI - A)-1 B | |
| u(s) | 
				                      					
