Signals and systems electrical engineering miscellaneous
-
If L[f(t)] = 2(s + 2) , then ƒ(0+) and ƒ(∞) are given by s² + 2s + 5
-
View Hint View Answer Discuss in Forum
2(s + 1) = 2(s + 1) = 2 s + 1 (s² + 2s + 5) (s² + 1)² + 5 (s + 1)² + 4
This is standard Laplace Transform for the functionL| exp (– at) cos ωt | = (s + a) (s + a)² + ω²
where a = 1, ω = 2
Hence ƒ(t) = 2e– t cos 2t
ƒ(0) = ƒ(0+) = 2e– 0 cos 2 × 0 = 2
ƒ(∞) = 2e– ∞ t = 0Correct Option: B
2(s + 1) = 2(s + 1) = 2 s + 1 (s² + 2s + 5) (s² + 1)² + 5 (s + 1)² + 4
This is standard Laplace Transform for the functionL| exp (– at) cos ωt | = (s + a) (s + a)² + ω²
where a = 1, ω = 2
Hence ƒ(t) = 2e– t cos 2t
ƒ(0) = ƒ(0+) = 2e– 0 cos 2 × 0 = 2
ƒ(∞) = 2e– ∞ t = 0
- The Laplace transform of a continuous-time signal x(t) is,
X(s) = 5 - s s² - s - 2
If the Fourier transform of this signal exists, then x(t) is
-
View Hint View Answer Discuss in Forum
X(s) = 5 - s = A + B (s + 1)(s - 2) (s + 1) (s - 2) A = 5 - s = - 2; and B 5 - s = 1 s - 1 s=-1 s + 1 s=2 then, X(t) = L– 1 X(s) = L– 1 - 2 + 1 s + 1 s - 2
= [e2t – 2e– t]u(t)Correct Option: A
X(s) = 5 - s = A + B (s + 1)(s - 2) (s + 1) (s - 2) A = 5 - s = - 2; and B 5 - s = 1 s - 1 s=-1 s + 1 s=2 then, X(t) = L– 1 X(s) = L– 1 - 2 + 1 s + 1 s - 2
= [e2t – 2e– t]u(t)
- The closed-loop transfer function of a control system is given by
C(s) = 2(s - 1) R(s) (s + 2)(s + 1)
For a unit step input the output is
-
View Hint View Answer Discuss in Forum
C(s) = 2(s - 1) ; R(s) = 1 R(s) (s + 2)(s + 1) s ∴ C(s) = 2(s - 1) (s + 1)(s + 2)
Expanding in partial fractions= k1 + k2 + k3 s s + 1 s + 3 ∴ k1 = - 2 = - 1 2 k2 = 2(s - 1) |s=-1 = 2(- 2) = 4 s(s + 2) - 1(1) k3 = 2(s - 1) |s=-2 = 2(- 3) = - 3 s(s + 2) - 2( - 2) Hence C(s) = 1 + 4 - 3 s s + 1 s + 2
and output, c(t) = [– 1 + 4e– t – 3e– 2t] u(t).Correct Option: A
C(s) = 2(s - 1) ; R(s) = 1 R(s) (s + 2)(s + 1) s ∴ C(s) = 2(s - 1) (s + 1)(s + 2)
Expanding in partial fractions= k1 + k2 + k3 s s + 1 s + 3 ∴ k1 = - 2 = - 1 2 k2 = 2(s - 1) |s=-1 = 2(- 2) = 4 s(s + 2) - 1(1) k3 = 2(s - 1) |s=-2 = 2(- 3) = - 3 s(s + 2) - 2( - 2) Hence C(s) = 1 + 4 - 3 s s + 1 s + 2
and output, c(t) = [– 1 + 4e– t – 3e– 2t] u(t).
- The response of an initially relaxed linear constant parameter network to a unit impulse applied at t = 0 is 4e– 2tu(t). The response of this network to a unit step function will be
-
View Hint View Answer Discuss in Forum
hs(t) = 4e– 2t u(t); H(s) = 4 s + 2
For unit step, Y(s) = H(s) X(s)Y(s) = 4 s(s + 2) = 2 = 2 ......since [X(s) = 1/s] 5 s + 2
y(t) = 2[1 – e– 2t] u(t)Correct Option: A
hs(t) = 4e– 2t u(t); H(s) = 4 s + 2
For unit step, Y(s) = H(s) X(s)Y(s) = 4 s(s + 2) = 2 = 2 ......since [X(s) = 1/s] 5 s + 2
y(t) = 2[1 – e– 2t] u(t)
- Laplace transform of the signal x(t) = tu(t)* cos 2πt u(t) will be
-
View Hint View Answer Discuss in Forum
⇒ X(s) = 1 s²(s² + 4π²) Correct Option: A
⇒ X(s) = 1 s²(s² + 4π²)