Signals and systems electrical engineering miscellaneous


Signals and systems electrical engineering miscellaneous

  1. If L[f(t)] =
    2(s + 2)
    , then ƒ(0+) and ƒ(∞) are given by
    s² + 2s + 5









  1. View Hint View Answer Discuss in Forum

    2(s + 1)
    =
    2(s + 1)
    = 2
    s + 1
    (s² + 2s + 5)(s² + 1)² + 5(s + 1)² + 4

    This is standard Laplace Transform for the function
    L| exp (– at) cos ωt | =
    (s + a)
    (s + a)² + ω²

    where a = 1, ω = 2
    Hence ƒ(t) = 2e– t cos 2t
    ƒ(0) = ƒ(0+) = 2e– 0 cos 2 × 0 = 2
    ƒ(∞) = 2e– ∞ t = 0

    Correct Option: B

    2(s + 1)
    =
    2(s + 1)
    = 2
    s + 1
    (s² + 2s + 5)(s² + 1)² + 5(s + 1)² + 4

    This is standard Laplace Transform for the function
    L| exp (– at) cos ωt | =
    (s + a)
    (s + a)² + ω²

    where a = 1, ω = 2
    Hence ƒ(t) = 2e– t cos 2t
    ƒ(0) = ƒ(0+) = 2e– 0 cos 2 × 0 = 2
    ƒ(∞) = 2e– ∞ t = 0


  1. The Laplace transform of a continuous-time signal x(t) is,
    X(s) =
    5 - s
    s² - s - 2

    If the Fourier transform of this signal exists, then x(t) is









  1. View Hint View Answer Discuss in Forum

    X(s) =
    5 - s
    =
    A
    +
    B
    (s + 1)(s - 2)(s + 1)(s - 2)

    A =
    5 - s
    = - 2; and B
    5 - s
    = 1
    s - 1s=-1s + 1s=2

    then, X(t) = L– 1 X(s) = L– 1
    - 2
    +
    1
    s + 1s - 2

    = [e2t – 2e– t]u(t)

    Correct Option: A

    X(s) =
    5 - s
    =
    A
    +
    B
    (s + 1)(s - 2)(s + 1)(s - 2)

    A =
    5 - s
    = - 2; and B
    5 - s
    = 1
    s - 1s=-1s + 1s=2

    then, X(t) = L– 1 X(s) = L– 1
    - 2
    +
    1
    s + 1s - 2

    = [e2t – 2e– t]u(t)



  1. The closed-loop transfer function of a control system is given by
    C(s)
    =
    2(s - 1)
    R(s)(s + 2)(s + 1)

    For a unit step input the output is









  1. View Hint View Answer Discuss in Forum

    C(s)
    =
    2(s - 1)
    ; R(s) =
    1
    R(s)(s + 2)(s + 1)s

    ∴ C(s) =
    2(s - 1)
    (s + 1)(s + 2)

    Expanding in partial fractions
    =
    k1
    +
    k2
    +
    k3
    ss + 1s + 3

    ∴ k1 =
    - 2
    = - 1
    2

    k2 =
    2(s - 1)
    |s=-1 =
    2(- 2)
    = 4
    s(s + 2)- 1(1)

    k3 =
    2(s - 1)
    |s=-2 =
    2(- 3)
    = - 3
    s(s + 2)- 2( - 2)

    Hence C(s) =
    1
    +
    4
    -
    3
    ss + 1s + 2

    and output, c(t) = [– 1 + 4e– t – 3e– 2t] u(t).

    Correct Option: A

    C(s)
    =
    2(s - 1)
    ; R(s) =
    1
    R(s)(s + 2)(s + 1)s

    ∴ C(s) =
    2(s - 1)
    (s + 1)(s + 2)

    Expanding in partial fractions
    =
    k1
    +
    k2
    +
    k3
    ss + 1s + 3

    ∴ k1 =
    - 2
    = - 1
    2

    k2 =
    2(s - 1)
    |s=-1 =
    2(- 2)
    = 4
    s(s + 2)- 1(1)

    k3 =
    2(s - 1)
    |s=-2 =
    2(- 3)
    = - 3
    s(s + 2)- 2( - 2)

    Hence C(s) =
    1
    +
    4
    -
    3
    ss + 1s + 2

    and output, c(t) = [– 1 + 4e– t – 3e– 2t] u(t).


  1. The response of an initially relaxed linear constant parameter network to a unit impulse applied at t = 0 is 4e– 2tu(t). The response of this network to a unit step function will be









  1. View Hint View Answer Discuss in Forum

    hs(t) = 4e– 2t u(t); H(s) =
    4
    s + 2

    For unit step, Y(s) = H(s) X(s)
    Y(s) =
    4
    s(s + 2)

    =
    2
    =
    2
    ......since [X(s) = 1/s]
    5s + 2

    y(t) = 2[1 – e– 2t] u(t)

    Correct Option: A

    hs(t) = 4e– 2t u(t); H(s) =
    4
    s + 2

    For unit step, Y(s) = H(s) X(s)
    Y(s) =
    4
    s(s + 2)

    =
    2
    =
    2
    ......since [X(s) = 1/s]
    5s + 2

    y(t) = 2[1 – e– 2t] u(t)



  1. Laplace transform of the signal x(t) = tu(t)* cos 2πt u(t) will be









  1. View Hint View Answer Discuss in Forum


    ⇒ X(s) =
    1
    s²(s² + 4π²)

    Correct Option: A


    ⇒ X(s) =
    1
    s²(s² + 4π²)