-
Consider an LTI system with transfer function
H(s) = 1 s(s + 4)
If the input to the system is cos(3t) and the steady state output is A sin(3t + a), then the value of A is
-
- 1/30
- 1/15
- 3/4
- 4/3
Correct Option: B
| H(s) = | ||
| s(s + 4) |
Input r(t) = cos 3t,
| R(s) = | ||
| s² + 9 |
Then C(s) = H(s). R(s)
| C(s) = | = | |||
| s² + 9 | s(s + 4) | (s + 4)(s² + 9) |
Using partial fraction, we have
| C(s) = | + | + | |||
| s + 4 | s - 3j | s + 3j |
| A = | ![]() | = | |||
| s² + 9 | s=-4 | 25 |
| B = | ![]() | = | |||
| (s + 4)(s + 3j) | s=-3j | (-6j)(4 - 3j) |
| C = | ![]() | = | |||
| (s + 4)(s - 3j) | s=-3j | (-6j)(4 - 3j) |
| Now, C(s) = | + | + | |||
| 25(s + 4) | (4 + 3j)(-6j)(s - 3j) | (4 - 3j)(-6j)(s + 3j) |
Inverse Laplace gives,
| C(t) = | e-4t + | [4e3jt - 4e-3jt - 3e3jt - 3e-3jt] | ||
| 25 | 150j |
| = | e-4t + | [8 sin 3t + 6 cos 3t] | ||
| 25 | 150 |
| = | e-4t + | ![]() | sin 3t - | cos 3t | ![]() | ||||
| 25 | 150 | 5 | 5 |
| = | e-4t + | sin (3t + α) | ||
| 25 | 15 |
where α = tan-1 (3/4)
At steady-state t → ∞
| and C(t) = | sin (3t + α) | |
| 15 |
| gives A = | ||
| 15 |


