-
If x[n] = 
1 
|n| - 
1 
|n| u[n], 3 2
then the region of conver gence (ROC) of its Z-transform in the Z-plane will be
-
-
1 < |z| < 3 3 -
1 < |z| < 1 3 2 -
1 < |z| > 3 2 -
1 < |z| 3
-
Correct Option: C
| x(n) = | ![]() | ![]() | |n| | - | ![]() | ![]() | n | + u[n] | ||
| 3 | 2 |
| = | ![]() | ![]() | n | u(n) + | ![]() | ![]() | -n | u(-n) - | ![]() | ![]() | n | u(n) | |||
| 3 | 3 | 2 |
| = | ![]() | ![]() | n | u(n) + (3)n u(-n) - | ![]() | ![]() | n | u(n) | ||
| 3 | 2 |
| ROC : |z| > | |z| < 3 | |
| 3 |
| |z| > | ||
| 2 |
| Common ROC : | < |z| < 3 | |
| 2 |