Direction: Consider the linear Programme (LP)
Max 4x + 6y
Subject to
3x + 2y < 6
2x + 3y < 6
x, y > 0
-
The dual for the LP in Q. 21 is
-
- Min 6u+6v
subject to
3u + 2v ≥ 4
2u + 3v ≥ 6
u, v ≥ 0 - Max 6u + 6v
subject to
3u + 2v < 4
2u + 3v < 6
u, v ≥ 0
- Max 4u + 6v
subject to
3u + 2v ≥ 6
2u + 3v ≥ 6
u, v ≥ 0 - Min 4u + 6v
subject to
3u + 2v ≤ 6
2u + 3v ≤ 6
u, v ≥ 0
- Min 6u+6v
Correct Option: A
Given form of the dual and primal relationship
max(z)= cx
Subject to
Ax ≤ b
x ≥ 0
max (w) =by
Subject to
Ay ≥ c
y ≥ 0
Hence dual for the primal is
min (w) = 6u +6v
Subject to
3u + 2v ≥ 4
2u + 3v ≥ 6
u, v ≥ 0