Analog circuits miscellaneous
-  In the given circuit the silicon transistor has β = 75 collector voltage VC = 9V. The ratio of RB and RC is ______. 
- 
                        View Hint View Answer Discuss in Forum  
 IC = BIB
 IC = 75 IB
 IC + IB = 75 IB + IB = 76IBIC + IB = 15 - 9 RC 76 IB = 6 ...(i) RC IB = 9 - 0.7 = 8.3 ...(ii) RB RB 
 Equation (i) / Equation (ii),76IB = 6 / RC = 6 × RB IB 8.3 / RC RC 8.3 RB = 76 × 8.3 = 105.1 RC 6 RB = 105.13 RC 
 Correct Option: B 
 IC = BIB
 IC = 75 IB
 IC + IB = 75 IB + IB = 76IBIC + IB = 15 - 9 RC 76 IB = 6 ...(i) RC IB = 9 - 0.7 = 8.3 ...(ii) RB RB 
 Equation (i) / Equation (ii),76IB = 6 / RC = 6 × RB IB 8.3 / RC RC 8.3 RB = 76 × 8.3 = 105.1 RC 6 RB = 105.13 RC 
 
-  Two perfectly matched silicon transistors are connected as shown in the figure. Assuming the β of the transistors to be very high and the forward voltage drop in diodes to be 0.7 V, the value of current I is 
- 
                        View Hint View Answer Discuss in Forum Since Both thyristor are perfectly matched, so VBE1 = VBE2  ∴ IC1 = exp  VBE1 - VBE2  = e0 = 1 IC2 VT 
 Since β for both are same, therefore IB1 = IB2 = IB
 Now by KVL in loop as shown,IR = 0 - 0.7 - (-5) = 4.3 mA 1 kΩ 
 By KCL at point M
 IR = IC1 + 2 IBIR = IC1 + 2 IC1 β ∴ IC1 = β IR β + 2 For large β , β ≈ 1 β + 2 
 ∴ IC1 = IR = 4.3 mA
 ∴ I = IC2 = IC1 = 4.3 mA
 Correct Option: CSince Both thyristor are perfectly matched, so VBE1 = VBE2  ∴ IC1 = exp  VBE1 - VBE2  = e0 = 1 IC2 VT 
 Since β for both are same, therefore IB1 = IB2 = IB
 Now by KVL in loop as shown,IR = 0 - 0.7 - (-5) = 4.3 mA 1 kΩ 
 By KCL at point M
 IR = IC1 + 2 IBIR = IC1 + 2 IC1 β ∴ IC1 = β IR β + 2 For large β , β ≈ 1 β + 2 
 ∴ IC1 = IR = 4.3 mA
 ∴ I = IC2 = IC1 = 4.3 mA
 
-  The following circuit has R = 10k&ohm:, C = 10&m;F. The input voltage is a sinusoid at 50Hz with an rms value of 10V under ideal conditions, the current is from the source is 
- 
                        View Hint View Answer Discuss in Forum Xc = 1 = 1 = 103 ohm ω C 2π × 50 × 10μF π VA = - jXc . V0 -jXc + R ∴ V0 = - jXc + R . VA -jXc  
 Assuming virtual ground,
 Vin = VA = 10V∴ V0 = - jXc + R . 10 -jXc Current , is = Vin - V0 R = 1  10 - -jXc + R .10  104 -jXc = 1  1 - -jXc + R  103 -jXc = 1  -jXc + jXc - R  103 -jXc = 1 R = 1 . 1 × 10 × 103 103 jXc j 103 (103 / π) = 10π × 10-3 = (10π mA) ∠ -90° lagging j 
 Alternately
 V1 = Vs = R . is + V0V2 = Vo 1 jωC = Vo 1 1 + R 1 + jωRC jωC But Vo = A(V1 – V2) = A  Vs - V0  1 + jωRC ⇒ Vo  1 + A  = AVs 1 + jωRC ⇒ V0 = A(1 + jωRC) ≃ 1 + jωRC Vs 1 + jωRC + A 
 = 1 + j 100 π × 104 × 10 × 10–6 = 1 + j 10π
 ⇒ Vo = Vs (1 + j 10π) = 10 (1 + j 10π)
 But Vs = R . is + Voor is = Vs - V0 = 10 - 10 - j100π R 10 × 103 
 = – j 10π mA = 10π ∠– 90° mA
 Correct Option: DXc = 1 = 1 = 103 ohm ω C 2π × 50 × 10μF π VA = - jXc . V0 -jXc + R ∴ V0 = - jXc + R . VA -jXc  
 Assuming virtual ground,
 Vin = VA = 10V∴ V0 = - jXc + R . 10 -jXc Current , is = Vin - V0 R = 1  10 - -jXc + R .10  104 -jXc = 1  1 - -jXc + R  103 -jXc = 1  -jXc + jXc - R  103 -jXc = 1 R = 1 . 1 × 10 × 103 103 jXc j 103 (103 / π) = 10π × 10-3 = (10π mA) ∠ -90° lagging j 
 Alternately
 V1 = Vs = R . is + V0V2 = Vo 1 jωC = Vo 1 1 + R 1 + jωRC jωC But Vo = A(V1 – V2) = A  Vs - V0  1 + jωRC ⇒ Vo  1 + A  = AVs 1 + jωRC ⇒ V0 = A(1 + jωRC) ≃ 1 + jωRC Vs 1 + jωRC + A 
 = 1 + j 100 π × 104 × 10 × 10–6 = 1 + j 10π
 ⇒ Vo = Vs (1 + j 10π) = 10 (1 + j 10π)
 But Vs = R . is + Voor is = Vs - V0 = 10 - 10 - j100π R 10 × 103 
 = – j 10π mA = 10π ∠– 90° mA
 
-  For the circuit shown below, 
 the CORRECT transfer characteristic is
- 
                        View Hint View Answer Discuss in Forum Redrawing the first stage,  
 Assuming ideal OPAMP’sV- = V+ = V2 2 V+ = V2 R = V2 R + R 2 
 Using KCL at inverting terminal, we getV1 - V- = V- - V01 R R 
 ⇒ V01 = 2V– – V1 = V2 – V1
 = – Vi [as V1 – V2 = Vi]
 For the second-stage schmitt-trigger. 
 For V01 < V+ or Vi > V+, V0 = 12 Voltsv+ = R VR + R V0 ≡ V1 R + R R + R 
 As VR = 0 [VR is grounded]v+ = V0 ≡ V1 .......(A) 2 
 For v01 > v+
 or vi < v+ , v0 = – 12 volts
 The voltage at the non-inverting terminal is,v+ = R VR - R V0 ≡ V2 R + R R + R v+ = - V0 ≡ V2 2   
 Correct Option: DRedrawing the first stage,  
 Assuming ideal OPAMP’sV- = V+ = V2 2 V+ = V2 R = V2 R + R 2 
 Using KCL at inverting terminal, we getV1 - V- = V- - V01 R R 
 ⇒ V01 = 2V– – V1 = V2 – V1
 = – Vi [as V1 – V2 = Vi]
 For the second-stage schmitt-trigger. 
 For V01 < V+ or Vi > V+, V0 = 12 Voltsv+ = R VR + R V0 ≡ V1 R + R R + R 
 As VR = 0 [VR is grounded]v+ = V0 ≡ V1 .......(A) 2 
 For v01 > v+
 or vi < v+ , v0 = – 12 volts
 The voltage at the non-inverting terminal is,v+ = R VR - R V0 ≡ V2 R + R R + R v+ = - V0 ≡ V2 2   
 
-  Given that the op-amps in the figure are ideal, the output voltage V0 is 
- 
                        View Hint View Answer Discuss in Forum  V2 - V1 + V2 - V02 = 0 2R R ∴ V02 = 3V2 - V1 .....(i) 2 
 V1 - V2 + V1 - V01 = 0 2R R ∴ V01 = 3V1 - V2 ......(ii) 2 
 ∵ I1 = If V02 - V01  =  V01 - V0  2 2 R R 
 From equation (i) and (ii)
 ∴ V0 = V01 – V02=  3V1 - V2  -  3V2 - V1  2 2 
 V0 = 2(V1 – V2)Correct Option: B V2 - V1 + V2 - V02 = 0 2R R ∴ V02 = 3V2 - V1 .....(i) 2 
 V1 - V2 + V1 - V01 = 0 2R R ∴ V01 = 3V1 - V2 ......(ii) 2 
 ∵ I1 = If V02 - V01  =  V01 - V0  2 2 R R 
 From equation (i) and (ii)
 ∴ V0 = V01 – V02=  3V1 - V2  -  3V2 - V1  2 2 
 V0 = 2(V1 – V2)
 
	