Kinetic Theory
- One mole of an ideal diatomic gas undergoes undergoes a transition from A to B along a path AB as shown in the figure.
The change in internal energy of the gas during the transition is:
-
View Hint View Answer Discuss in Forum
Change in internal energy from A → B
∆U = f nR∆T = f nR (Tf – Ti) 5 {PfVf – PiVi} 2 2 2
(As gas is diatomic ∴ f = 5)= 5 {2 × 10³ × 6 – 5 × 10³ × 4} 2 = 5 {12 - 20} × 10³J = 5 × (-4) × 10³J 2
∆U = - 20KJCorrect Option: A
Change in internal energy from A → B
∆U = f nR∆T = f nR (Tf – Ti) 5 {PfVf – PiVi} 2 2 2
(As gas is diatomic ∴ f = 5)= 5 {2 × 10³ × 6 – 5 × 10³ × 4} 2 = 5 {12 - 20} × 10³J = 5 × (-4) × 10³J 2
∆U = - 20KJ
- A gas mixture consists of 2 moles of O2 and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is :-
-
View Hint View Answer Discuss in Forum
Internal energy of the system is given by
U = f nRT 2
Degree of freedom
Fdiatomic = 5
fmonoatomic = 3
and, number of moles
n(O2) = 2
n(Ar) = 4Utotal = 5 (2)TR + 3 (4)TR = 11RT 2 2 Correct Option: C
Internal energy of the system is given by
U = f nRT 2
Degree of freedom
Fdiatomic = 5
fmonoatomic = 3
and, number of moles
n(O2) = 2
n(Ar) = 4Utotal = 5 (2)TR + 3 (4)TR = 11RT 2 2
- Two containers A and B are partly filled with water and closed. The volume of A is twice that of B and it contains half the amount of water in B. If both are at the same temperature, the water vapour in the containers will have pressure in the ratio of
-
View Hint View Answer Discuss in Forum
Vapour pressure does not depend on the amount of substance. It depends on the temperature alone.
Correct Option: B
Vapour pressure does not depend on the amount of substance. It depends on the temperature alone.
- According to kinetic theory of gases, at absolute zero temperature
-
View Hint View Answer Discuss in Forum
NA
Correct Option: C
NA
- In the given (V – T) diagram, what is the relation between pressure P1 and P2 ?
-
View Hint View Answer Discuss in Forum
P1 > P2
As V = constant ⇒ P∝ T
Hence from V–T graph P1 > P2Correct Option: B
P1 > P2
As V = constant ⇒ P∝ T
Hence from V–T graph P1 > P2