-
In a two element series network, the voltage and current respectively given as,
v (t) = 50 sin (314t) + 50 sin (942t) V
i(t) = 10 sin (314t + 60°) + 8 sin (942t + 45°)
A, then the power factor of the network is approximately—
-
- 0·9
- 0·6
- 0·3
- 0·1
- 0·9
Correct Option: B
Given,
V(t) = 50 sin (314t) + 50 sin (942t)V
i(t) = 10 sin (314t + 60°) + 8 sin (942t + 45°)A
Average or Real power or True power = Power of fundamental + Power of harmonics
or
Pav = | cos 60° + | cos 45° | ||
2 | 2 |
= 125 + 100 2
Reactive Power = | cos 60° + | cos 45° | ||
2 | 2 |
= 125 3 + 100 2
Now, Power factor = | |
Apparent Power |
or
Power factor = | |
(125 + 100 2)2 + (125 3 + 100 2)2 |
or
Power factor ≈ 0·6.