-
Which of the signals is non-periodic?
-
- x(t) = sin 15πt
- x(t) = sin 20πt
- x(t) = sin 15πt + sin 20πt
- x(t) = sin 20πt + sin 5πt
Correct Option: C
(A) x(t) = sin 15πt
The fundamental period is
| T0 = | = | = | |||
| ω | 15π | 15 |
(B) x2(t) = sin 20πt,
| T0 = | |
| ω |
The fundamental period,
| T0 = | = | |||
| 20π | 10 |
(C) x(t) = sin 15πt + sin 20πt
where, sin 15πt → x1(t)
sin 20πt → x2(t)
The fundamental period of
| x1(t)= T1 = | = | |||
| 15π | 15 |
The fundamental period of
| x2(t)= T2 = | = | |||
| 20π | 10 |
For the function x(t) to be period the ratio of T1/T2 should be rational i.e.,
| = | ||
| T2 | ||
| 10 |
| = | = 1.5 | |
| 2 |
which is not rational i.e., x(t) is a periodic.
(D) x(t) = sin 20πt + sin 5πt
where, sin 15πt → x1(t)
sin 20πt → x2(t)
The fundamental period of
| x1(t)= T1 = | = | |||
| 2π | 10 |
The fundamental period of
| x2(t)= T2 = | = | |||
| 5π | 5 |
| Ratio | = | ||
| T2 | |||
| 5 |
| = | ||
| 4 |
which can be expressed as ratio of integers. Hence, x(t) is periodic.
Hence, alternative (C) is the correct choice.