-
Which of the following is inverse z-transform of
x(z) = z + 2 ; |z| > 3 2z2 – 7z + 3
-
-
2 + 
1 
n u(n) – 1 (3)n u(n) 3 2 3 -
2 δ(n) + 
1 
n u(n) – 1 (3)n u(n) 3 2 3 -
2 δ(n) – 
1 
n u(– n – 1) + 1 (3)n u(– n – 1) 3 2 3 -
2 δ(n) – 
1 
n u(n) + 1 (3)n u(n) 3 2 3
-
Correct Option: D
The partial fraction expansion of X(z) z which is
| F(z) = | = | |||
| z | z(2z2 – 7z + 3) |
| = | z + 2 | |||||
| 2z | ![]() | z – | ![]() | (z + 3) | ||
| 2 | ||||||
=
| + | |||||
| z | z – | z – 3 | |||
| 2 | |||||
where,
A0 = zF(z)|z = 0
| = | z + 2 | |z = 0 = | 2 | |||||
| 2 | ![]() | z – | ![]() | (z – 3) | 3 | |||
| 2 | ||||||||
| A1 = | ![]() | z – | ![]() | F(z)|z = 1/2 | 2 |
| = | |z = 1/2 = – 1 | 2z(z – 3) |
A2 = (z – 3)F(z)|z = 3
| = | z + 2 | |z = 3 = | 1 | |||||
| 2z | ![]() | z – | ![]() | 3 | ||||
| 2 | ||||||||
Hence, by multiplying X(z)/z by z, we obtain
| X(z) = | 2 | – | z | + | 1 | z | ||
| 3 | z – | 3 | z – 3 | |||||
| 2 | ||||||||
In the region |z| > 3 both poles are interior i.e., x(n) is causal.
Here, in the given function X(z) has two poles,
| P1 = | 2 |
and P2 = 3
| ∴ x(n) = | δ(n) – | ![]() | ![]() | n | u(n) + | (3)n u(n) | |||
| 3 | 2 | 3 |
Hence, alternative (D) is the correct choice.