-
The convolution integral when—
f1(t) = e– 2t
and f2(t)= 2t is—
-
-

t – 1 + e– 2t 
u(t) 2 2 -

t + 1 - e– 2t 
u(t) 2 2 -

t – 1 - e– 2t 
u(t) 2 2 -

t + 1 + e 2t 
u(t) 2 2
-
Correct Option: A
We know that
f1(t)*f2(t) = ∫t0 f1(τ ).f2(t – τ )dτ
= ∫t0 2τ·e-2(t – τ) dτ
= e- 2t ∫t0 2τ·e2τdτ
| = 2e- 2t | ![]() | τ· | ∫t0 τ· | · dτ | ![]() | t | ||
| 2 | 2 | 0 |
| = 2e- 2t | ![]() | – | ![]() | t | ||||
| 2 | 4 | 0 |
| = 2e- 2t | ![]() | – | + | ![]() | ||||
| 2 | 4 | 4 |
| = | ![]() | t | + | ![]() | u(t) | |||
| 2 | 2 |
Hence, alternative (A) is the correct answer.